12 research outputs found

    Role of tomato BRANCHED1-like genes in the control of shoot branching

    No full text
    Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699International audienceIn angiosperms, shoot branching greatly determines overall plant architecture and affects fundamental aspects of plant life. Branching patterns are determined by genetic pathways conserved widely across angiosperms. In Arabidopsis thaliana (Brassicaceae, Rosidae) BRANCHED1 (BRC1) plays a central role in this process, acting locally to arrest axillary bud growth. In tomato (Solanum lycopersicum, Solanaceae, Asteridae) we have identified two BRC1-like paralogues, SlBRC1a and SlBRC1b. These genes are expressed in arrested axillary buds and both are down-regulated upon bud activation, although SlBRC1a is transcribed at much lower levels than SlBRC1b. Alternative splicing of SlBRC1a renders two transcripts that encode two BRC1-like proteins with different C-t domains due to a 3'-terminal frameshift. The phenotype of loss-of-function lines suggests that SlBRC1b has retained the ancestral role of BRC1 in shoot branch suppression. We have isolated the BRC1a and BRC1b genes of other Solanum species and have studied their evolution rates across the lineages. These studies indicate that, after duplication of an ancestral BRC1-like gene, BRC1b genes continued to evolve under a strong purifying selection that was consistent with the conserved function of SlBRC1b in shoot branching control. In contrast, the coding sequences of Solanum BRC1a genes have evolved at a higher evolution rate. Branch-site tests indicate that this difference does not reflect relaxation but rather positive selective pressure for adaptation

    Shade avoidance and neighbor detection

    No full text
    Plants detect neighboring vegetation as potential competitors for resources. Vegetation proximity is perceived by changes in the red (R) to far-red (FR) ratio (R:FR) through the phytochrome photorecep-tors. To face this challenge, many plants have evolved the strategy to avoid shade, displaying a series of responses known as the shade avoidance syndrome (SAS). The SAS responses have been mostly studied at the seedling stage, and cover hypocotyl elongation as well as cotyledon and primary leaf expansion. In adult stages, SAS responses include an increase in petiole elongation and a decrease in leaf expansion, and an increase in plant height. Thus, the analysis of these responses provides a valuable and simple way to study how vegetation proximity affects plant development in both seedlings and adult plants. Here we describe a simple protocol to simulate shade in the laboratory and to evaluate these responses. Overall, our protocol can be easily used to expand the set of SAS responses of plants at different stages of development
    corecore