1,738 research outputs found

    Nanosized patterns as reference structures for macroscopic transport properties and vortex phases in YBCO films

    Full text link
    This paper studies the striking correlation between nanosized structural patterns in YBCO films and macroscopic transport current. A nanosized network of parallel Josephson junctions laced by insulating dislocations is almost mimicking the grain boundary structural network. It contributes to the macroscopic properties and accounts for the strong intergranular pinning across the film in the intermediate temperature range. The correlation between the two networks enables to find out an outstanding scaling law in the (Jc,B) plane and to determine meaningful parameters concerning the matching between the vortex lattice and the intergranular defect lattice. Two asymptotic behaviors of the pinning force below the flux flow regime are checked: the corresponding vortex phases are clearly individuated.Comment: 4 pages, 4 figure

    Strong Reduction of the Field-Dependent Microwave Surface Resistance in YBCO with BaZrO_3 Inclusions

    Full text link
    We present measurements of the magnetic field dependent microwave surface resistance in laser-ablated YBa2_2Cu3_3O7−δ_{7-\delta} films on SrTiO3_3 substrates. BaZrO3_3 crystallites were included in the films using composite targets containing BaZrO3_3 inclusions with mean grain size smaller than 1 μ\mum. X-ray diffraction showed single epitaxial relationship between BaZrO3_3 and YBa2_2Cu3_3O7−δ_{7-\delta}. The effective surface resistance was measured at 47.7 GHz for 60<T<< T <90 K and 0<μ0H<< \mu_0H <0.8 T. The magnetic field had a very different effect on pristine YBa2_2Cu3_3O7−δ_{7-\delta} and YBa2_2Cu3_3O7−δ_{7-\delta}/BaZrO3_3, while for μ0H=\mu_0H=0 only a reduction of TcT_c in the YBa2_2Cu3_3O7−δ_{7-\delta}/BaZrO3_3 film was observed, consistent with dc measurements. At low enough TT, in moderate fields YBa2_2Cu3_3O7−δ_{7-\delta}/BaZrO3_3 exhibited an intrinsic thin film resistance lower than the pure film. The results clearly indicate that BaZrO3_3 inclusions determine a strong reduction of the field-dependent surface resistance. From the analysis of the data in the framework of simple models for the microwave surface impedance in the mixed state we argue that BaZrO3_3 inclusions determine very steep pinning potentials.Comment: LaTeX, 6 pages, 4 figures, uses jpconf.cls and jpconf11.clo class files, talk given at EUCAS 2007, submitted to J. Phys.: Conf. Serie

    Cygnus X-3 in outburst : quenched radio emission, radiation losses and variable local opacity

    Full text link
    We present multiwavelength observations of Cygnus X-3 during an extended outburst in 1994 February - March. Intensive radio monitoring at 13.3, 3.6 & 2.0 cm is complemented by observations at (sub)millimetre and infrared wavelengths, which find Cyg X-3 to be unusually bright and variable, and include the first reported detection of the source at 0.45 mm. We report the first confirmation of quenched radio emission prior to radio flaring independent of observations at Green Bank. The observations reveal evidence for wavelength-dependent radiation losses and gradually decreasing opacity in the environment of the radio jet. We find that the radiation losses are likely to be predominantly inverse Compton losses experienced by the radio-emitting electrons in the strong radiation field of a luminous companion to the compact object. We interpret the decreasing opacity during the flare sequence as resulting from a decreasing proportion of thermal electrons entrained in the jet, reflecting a decreasing density in the region of jet formation. We present, drawing in part on the work of other authors, a model based upon mass-transfer rate instability predicting gamma-ray, X-ray, infrared and radio trends during a radio flaring sequence.Comment: LaTeX, 11 pages, 6 figures. Submitted to MNRA

    Dysfunctional inflammation in cystic fibrosis airways: From mechanisms to novel therapeutic approaches

    Get PDF
    Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients

    A new apparatus for deep patterning of beam sensitive targets by means of high-energy ion beam

    Full text link
    The paper reports on a high precision equipment designed to modify over 3-dimensions (3D) by means of high-energy gold ions the local properties of thin and thick films. A target-moving system aimed at creating patterns across the volume is driven by an x-y writing protocol that allows one to modify beam sensitive samples over micrometer-size regions of whatever shape. The apparatus has a mechanical resolution of 15 nm. The issue of the local fluence measurement has been particularly addressed. The setup has been checked by means of different geometries patterned on beam sensitive sheets as well as on superconducting materials. In the last case the 3D modification consists of amorphous nanostructures. The nanostructures create zones with different dissipative properties with respect to the virgin regions. The main analysis method consists of magneto-optical imaging that provides local information on the electrodynamics of the modified zones. Features typical of non-linear current flow hint at which pattern geometry is more functional to applications in the framework of nanostructures across superconducting films.Comment: 7 page

    A critical review on the role of food and nutrition in the energy balance

    Get PDF
    The mass media has increasingly frequently suggested to the general population that specific foods or nutritional schemes are able to affect both human metabolism and energy expenditure, thus facilitating weight loss. This critical review is aimed at assessing available evidence on the roles of nutrients, food and dietary regimens in energy intake and energy expenditure. We queried the National Library of Medicine, the Cochrane Library, Excerpta Medica dataBASEand the Cumulative Index to Nursing and Allied Health Literature database, and a search strategy was performed by using database-specific subject headings and keywords. We found that available scientific evidence on these topics is scarce, and that the limited number of available studies often have poor methodological quality. Only a few foods show beneficial effects on metabolism and energy expenditure, as the human energy balance is complex and multifactorial. Finally, microbiota may interfere with the intake, use and expenditure of energy in the human body. Conclusive evidence is still lacking, and, at present, it is not possible to identify a food or a diet with a significant impact on human energy expenditure
    • …
    corecore