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Abstract: The mass media has increasingly frequently suggested to the general population that
specific foods or nutritional schemes are able to affect both human metabolism and energy expenditure,
thus facilitating weight loss. This critical review is aimed at assessing available evidence on the roles
of nutrients, food and dietary regimens in energy intake and energy expenditure. We queried the
National Library of Medicine, the Cochrane Library, Excerpta Medica dataBASEand the Cumulative
Index to Nursing and Allied Health Literature database, and a search strategy was performed by
using database-specific subject headings and keywords. We found that available scientific evidence on
these topics is scarce, and that the limited number of available studies often have poor methodological
quality. Only a few foods show beneficial effects on metabolism and energy expenditure, as the
human energy balance is complex and multifactorial. Finally, microbiota may interfere with the intake,
use and expenditure of energy in the human body. Conclusive evidence is still lacking, and, at present,
it is not possible to identify a food or a diet with a significant impact on human energy expenditure.
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1. Introduction

A large amount of misleading news has circulated on social media, blogs, TV and magazines about
human nutrition. A specific food or nutrient is often presented as a cure for one or more pathologies,
ranging from diabetes mellitus to cancer or Alzheimer's disease [1]. A great amount of information
without scientific reliability relative to the treatment of overweightness/obesity is available, a topic in
which myths and presumptions are very common [2]. Comprehension of the individual energy balance
is particularly complex, owing to physiological compensation to changes in energy intake and/or
expenditure [3]. Social media, the Internet, TV and magazines frequently propose direct-to-consumer
“information” about food, dietary schemes or supplements which increase the energy expenditure
and/or burn fats or, otherwise, reduce the energy expenditure and lead to fat accumulation. However,
most of these advertisements contain mis- or dis-information. Some examples include: “drink a lot
and consume fat-burning foods” (e.g., pineapple, ginger, onion, avocado, asparagus, celery, chili,
broccoli, green tea, garlic, etc.) and “avoid the foods that make you fat” (e.g., pasta, bread and foods
containing gluten, oil, dairy products, etc.), in order to lose weight [4]. All these suggestions are
generally incorrect: there are no foods with negative calories and focusing on one or a few foods or
nutrients does not work, as a multifaceted and individualized program with careful follow-up over
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time is required to lose weight [5]. This kind of mis-/dis-information is particularly concerning, owing
to its influence on the general population, and such wrong beliefs have been found to be hard to correct,
especially in people with lower cognitive ability [6].

The aim of the present paper is to critically review the available evidence about the roles of nutrients,
food, and dietary regimens on energy intake and energy expenditure, taking into consideration all the
conditions potentially impacting on the final energy balance, including the gut microbiota. In particular,
we analyzed the following topics:

(i) The energy balance in humans;
(ii) Energy intake from food;
(iii) Energy expenditure due to food intake;

- the role of nutrients;
- the role of foods;
- the role of diet plans;

(iv) The impact of the gut microbiota on the human energy balance.

2. Methods

The following databases were queried: PubMed (National Library of Medicine), the Cochrane
Library, Excerpta Medica dataBASE (EMBASE) and the Cumulative Index to Nursing and Allied
Health Literature (CINAHL). The search strategy was performed by using database-specific subject
headings and keywords (i.e., energy, energy expenditure, energy balance, energy intake, caloric intake,
diet-induced thermogenesis, thermogenesis, plus the specific nutrients/foods/diets or gut microbiota).
No restrictions were placed. Hand-searching the references of the studies and reviews of the field
was performed to augment the search strategy. To search for toxicity information (of single foods),
the following terms were used: toxicity, adverse events, adverse effects, side effects, reactivity
and interactions.

Few papers were available about many topics; therefore, all the research articles were considered
with the following scale of priority: systematic reviews and meta-analyses, randomized controlled
trials (RCTs), human observational studies, case series, animal studies and in vitro studies.

3. The Energy Balance in Humans

In humans, energy intake (EI) and energy expenditure (EE) are in a complex balance, resulting from
the difference between EI and EE, aimed at maintaining a relatively constant level of energy stores over
time in accordance with the principle of energy conservation [3]. When EI is reduced, a corresponding
reduction in EE occurs (and vice versa), in order to minimize perturbations to energy homeostasis [7].
Energy intake is derived from dietary macronutrients (proteins, carbohydrates and lipids) and alcohol.
The absorption of calories depends both on food and individual characteristics [3]. A high degree of
overfeeding was associated with a greater fractional decrease in stool energy loss in lean but not in obese
individuals, thus indicating that the degree of overnutrition relative to individual weight-maintaining
energy needs may play a role in the determination of the efficiency of nutrient absorption [8]. Daily total
energy expenditure (TEE) can be split into different components: resting energy expenditure (REE),
which is the energy required to support body’s basic metabolic activities; activity-induced energy
expenditure (AEE), the energy cost of physical activity and exercise; diet-induced thermogenesis (DIT),
the energy spent to process the ingested food (about 10%-15% of TEE); and the energy necessary for
body thermoregulation. REE can be 3%–10% higher than basal energy expenditure (BEE), which is
the energy required to maintain vital body functions [9–11]. REE is mostly determined by body size
and composition and is positively correlated with body weight and fat-free mass. AEE is the most
variable component of TEE depending on an individual’s lifestyle [12,13]. Food intake affects all the
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components of TEE—but predominantly DIT—with different effects according to the macronutrient
composition of a meal and daily variation within the same individual [3,14].

Energy homoeostasis is fundamental for survival and, hence, highly specialized adaptive
mechanisms counteract energy imbalances, making energy balance a complex process.
Adaptive thermogenesis (AT) and facultative thermogenesis (i.e., the heat production in response
to environmental variations) both protect an organism from exposure to cold and regulate the
energy balance after dietary changes, and are influenced by the activity of the sympathetic nervous
system (SNS), leptin and many hormones (mainly 3,5,3’-tri-iodothyronine) [15,16]. A major site of AT
is the brown adipose tissue (BAT), where non-shivering thermogenesis occurs with the uncoupling of
mitochondrial substrate oxidation from adenosine triphosphate (ATP) production and the release of
fatty acid oxidation energy as heat [17,18]. BAT is activated not only by cold exposure, but also by
certain food ingredients, thus contributing to DIT [19,20]. The same signals activating BAT also induce
the expression of uncoupling protein 1 (UCP1) in white adipose tissue (WAT) cells (the “beige” cells),
a phenomenon known as browning [21].

Either energy restriction or overfeeding induce adaptive changes in the energy balance, with AT,
respectively directed towards energy sparing or vice versa. Reducing habitual energy intake by about
10% reduces TEE by 10%–15%, mainly due to reduced REE; furthermore, AT can explain about 50% of
the less-than-expected weight loss in patients with obesity [16,22].

4. Energy Intake from Food

The actual energy content of some foods may differ from the energy, which is theoretically
calculated, due to differences in macronutrient digestibility and food structure [23,24]. One of the best
examples of this discrepancy is represented by nuts. Herein, we shortly describe the energy of this
paradigmatic food.

Tree nuts are energy-dense foods, due to their high content of lipids (ranging between 40–75 g
per 100 g) [25]. However, the inclusion of nuts as part of a healthy diet does not affect body weight,
as reported by observational and experimental studies, even though nuts may benefit weight-loss
diets [24]. Several mechanisms have been proposed to explain this discrepancy, including appetite
control, increased DIT (as discussed below), and discrepancies in available metabolizable energy
(ME, i.e., the amount of the food available energy to the human organism) [24]. To calculate the food
ME, each energy-contributing food component is multiplied by its Atwater factor [23]. However,
recent evidence has demonstrated that the Atwater factors do not provide accurate ME values for
several nuts in healthy volunteers [26–29]. Indeed, based on the measurements on urine and feces,
ME values were found to be 25%, 20%, 16% and 5% less than those calculated for almonds, walnuts,
cashews and pistachios, respectively. The reason for this discrepancy is partly due to the structure of
nuts, which limits the accessibility of digestive enzymes. In oilseeds, such as nuts, lipids are stored in
oil bodies which are covered by a thin layer of phospholipids and proteins and encapsulated in cell
walls [30], whose components (e.g., cellulose, hemicellulose, peptic substances and lignin) are mainly
indigestible by human digestive enzymes [23]. After nut mastication, large particles representing
clusters of intact cells remain, which provide protection against disintegration and a physical barrier
for enzyme hydrolysis and microbiota metabolism [31]. These clusters of cells, with intracellular lipids
encapsulated within the cell walls, were still intact after having passed through the human intestine,
thus reducing the intake of energy. Furthermore, it has been demonstrated that when almonds were
chewed 10 times, a higher number of larger particles was obtained than when they were chewed
25 or 40 times [32]. These large particles retain more energy and lipids (which are then lost in the
stool) than smaller ones (43.7%, 32.7% and 30.8% of the lipid load was lost in the stool after 10, 25
and 40 chews, respectively). On the other hand, other processes (such as roasting) make almonds
more brittle and crunchy, with the subsequent production of smaller particles after mastication [33]
and the induction of swelling of the cell walls with increased porosity and destruction of oil bodies,
favoring the access of digestive enzymes [30]. These changes slightly increased the measured ME
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of roasted almonds, compared to whole almonds, even though their ME was still lower than that
predicted with the Atwater factor (-25% and -19% for whole natural almonds and whole roasted
almonds, respectively) [34]. In almond butter, where the cellular structure is fully destroyed, there is a
full release of energy, with no discrepancy between the measured ME and the predicted energy content.
Similarly, fecal fat content was significantly higher when 70 g of whole peanuts were consumed in
healthy adults, compared to other forms of peanuts (i.e., oil, butter and flour) [35].

The effect of structure on the actual energy content of foods has been shown mainly for nuts,
but the same effect may be extended to other seeds, legumes and some cereals. This lower actual
energy content may have an impact on the overall energy intake when a diet is rich in unprocessed
foods where the food structure is retained [23].

5. Energy Expenditure Due to Food Intake

5.1. The Role of Nutrients

Food intake stimulates energy expenditure; this is a well-known phenomenon, called DIT or
the thermic effect of food. DIT accounts for ~10%–15% of TEE, which is a meaningful amount of
the human body daily energy expenditure [36] and which can be measured by indirect calorimetry
through the assessment of oxygen consumption and carbon dioxide production [37]. However, this
method of measurement based on respiratory exchange has been recently blamed for overestimating
DIT, as it is based on the assumption that all metabolic processes of the organism consume oxygen and
produce carbon dioxide, which is not always true [38]. Both insulin resistance and, to a lesser extent,
abdominal adiposity, have an impact on DIT by reducing the thermic effect of a meal [39]. In fact,
insulin, by increasing glucose oxidation and inhibiting lipid oxidation, regulates the cellular substrate
flow and utilization, which is therefore impaired in the presence of abnormal insulin sensitivity [40].

At present, there is great interest in the possibility of modulating DIT in order to increase the
body's energy expenditure and promote weight loss. First of all, DIT has been proven to be influenced
by meal timing, with DIT being higher in the morning and reduced in the evening [41]. Increased
nocturnal insulin-resistance and heightened ghrelin levels, slower evening gastric emptying with
increased carbohydrate absorption, and increased morning sympathetic activity have been proposed
as possible explanations [42]. In addition to meal timing, DIT is influenced by the caloric content of
a meal and increases in a direct proportion to the energy intake [14,43]. Finally, the macronutrient
composition of food seems to meaningfully affect post-prandial energy expenditure, even if the data
in the literature are controversial. Commonly, proteins have been considered to induce an increased
energy expenditure which, combined with a higher satiating effect, could determine a higher weight
loss [39,44]. On the other hand, carbohydrates and lipids determine a lower DIT than proteins (protein >

carbohydrates > lipids) [45,46]. Meals with protein percentages ranging from 11%–30% of the total
calories proportionally increase DIT until the value of 30%, where a plateau is reached and a subsequent
increase in the protein intake does not increase further the thermic effect of the meal [47]. The protein
source should be taken into account, as well: casein, soy or whey proteins are metabolized differently,
which may explain the variability in the speed and extent of DIT increase. In particular, whey proteins
lead to higher DIT than caseins, while contrasting results have been obtained in the comparison of
whey and soya proteins [48]. Regarding the quality of other nutrients, medium-chain lipids seem to
heighten DIT more than long-chain triglycerides [49,50] and unsaturated fats more than saturated,
probably due to up-regulation of proliferator-activated receptor (PPAR)-α expression [51]. Finally,
unrefined, fiber-rich carbohydrates determine an increased energy expenditure, especially if contained
in low-processed foods [39].

Overall, very few data are available about this topic and the clinical significance of any single
nutrient or single meal is unclear in a weight-loss strategy.
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5.2. The Role of Foods

An increasing number of foods are supposed to increase human energy expenditure [52]. The list
is long and is gradually getting longer (Supplementary Table S1). Herein, we examined those for which
scientific studies were available (Figure 1).Nutrients 2020, 12, x FOR PEER REVIEW 5 of 28 
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5.2.1. Green Coffee

Available Evidence

Almost the whole world’s coffee consumption derives from the beans of two coffee
plants—Coffea canephora and Coffea arabica—which contain many bioactive compounds, such as
caffeine (1,3,7-trimethylxanthine) and chlorogenic acid [53]. Green (unroasted) coffee and roasted
coffee contain the same amount of caffeine (1.2%–2.2%) but a different percentage of chlorogenic
acids (6.5%–10% vs 2.7%–3.1%, respectively) [54]. Caffeine increases thermogenesis and energy
expenditure by several mechanisms [55,56]. In humans, the thermic effect lasts about 150 min after a
single-dose caffeine ingestion [56] and one RCT reported a stronger metabolic impact among habitual
low consumers of caffeine, thus suggesting the possibility of a long-term insensitivity to the effects of
caffeine after high and prolonged exposure [57]. In human trials, an increase in energy expenditure
has been reported, varying from 6% (after 50 mg caffeine intake) [58] to 7% (after 200 mg caffeine
consumption) [57]. Chlorogenic acid has been reported to have beneficial effects against obesity and
other dysmetabolic disorders, as well as playing a favorable role in energetic metabolism in both
human and animal studies [59,60]. In a pilot study, the consumption of 1 cup of green coffee (containing
6 mg caffeine per kg of lean body mass, about 215–280 mg) determined an increase of REE by 6.4% at
30 min and 2.2% at 180 min, with a positive correlation between the chlorogenic acid assumed and the
REE values at 30 min [61].

Molecular Mechanisms of Action

In cultured adipocytes, caffeine has been shown to enhance BAT function and thermogenesis
by up-regulating UCP1 and BAT-selective regulatory genes including PPAR-γ, PPAR-γ coactivator
(PGC)-1α and PR domain containing 16 (PRDM16) [55]. PGC-1α also induces mitochondrial biogenesis
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and stimulates fatty-acid oxidation and oxygen consumption through the co-activation of PPAR-γ [55].
Caffeine induces PGC1α and UCP1 indirectly as well, by antagonizing the transient receptor potential
vanilloid (TRPV)-4, a negative regulator of PGC-1α in the TRPV receptor family and a modulator
of beige/brown adipocyte thermogenesis [55]. Adipose tissue browning is additionally stimulated
through the expression of other specific genes (CD137, LHX8, P2RX5, CITED1 and COX8b) [55]. Further
mechanisms have been implicated in the caffeine-induced thermogenesis, such as the antagonism of
adenosine-mediated inhibition of the secretion of epinephrine and norepinephrine and the inhibition
of phosphodiesterase, which increases intracellular levels of cyclic adenosine monophosphate (cAMP).
Catecholamines stimulate β-adrenergic receptors and cAMP activates the protein kinase A, which
enhances UCP1 activity through increased free fatty acid release [55,58,62]. Chlorogenic acid principally
up-regulates the AMP activated protein kinase (AMPK) with increased fatty acid oxidation and ATP
production [63].

Toxicity and Reactivity

According to the Food and Drug Administration (FDA), European Food Safety Authority (EFSA)
and Health Canada, the consumption of up to 400 mg caffeine can be considered safe in healthy
adults, without overt, adverse cardiovascular, behavioral, reproductive, bone and developmental
effects [64–66]. No reactivity with drugs, supplements or food has been reported for green coffee.

5.2.2. Green Tea (Camellia sinensis)

Available Evidence

The leaves of the plant Camellia sinensis give the three most popular types of tea, green (unfermented),
black (fully fermented) and oolong (semifermented) [67]. The main components of green tea are
polyphenols, in particular flavon-3-ols, also known as catechins, mostly epigallocatechin-3-gallate
(EGCG) [68]. Caffeine is naturally contained in green tea as well, in a variable amount, according to
the brewing period and the tea and water rate [68]. The fermentation process lowers the content of
polyphenols and increases caffeine in tea; green tea contains two times more catechins, but 2–3 times
less caffeine than black tea [68,69]. Indeed, most of the studies available on the effects of tea on the
energy balance are related to green tea. Many in vitro and animal studies have documented enhanced
thermogenesis, heightened energy expenditure and fat oxidation after green tea consumption [68,70,71].
Other beneficial effects are a reduction in fat mass due to the interruption of lipid emulsification,
the inhibition of gastrointestinal digestive enzymes activity, improvements in the gut microbiota and
reduction in adipocyte differentiation and food intake [69,71,72]. Both human observational studies
and trials have confirmed increased energy expenditure after the acute administration of green tea,
but the long-term effects are not currently proven [69,73–76]. It is noteworthy that in most of the trials,
the volunteers were provided with high doses of green tea catechins, equivalent to 3–4 cups of brewed
green tea a day [72], which are usually consumed only by a few population groups.

Molecular Mechanisms of Action

Catechins and caffeine (see the previous paragraph) affect energy expenditure differently. Catechins
inhibit the catechol-O-methyl transferase enzyme (COMT) in almost all the tissues, which, in turn,
inhibits the degradation of norepinephrine and produces protracted β-adrenergic stimulation. Hence,
the SNS activity is increased along with energy expenditure and fat oxidation [68,72,73]. In vivo
and in vitro, EGCG has been shown to affect energy expenditure by the activation of AMPK, which
promotes fatty acid oxidation and ATP production [69,72]. EGCG has also been reported to inhibit
mitochondrial oxidative phosphorylation, up-regulate the gene expressions of UCPs in BAT and
decrease ATP levels, which activates AMPK [69,72,74]. In vitro, fermented green tea induced the
up-regulation of fatty acid oxidation-related genes and increased energy expenditure by inducing
serotonin secretion [70].
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Toxicity and Reactivity

Green tea is safe across a wide range of intakes and preparations, however concentrated solid
extracts are less tolerated due to the high content of EGCG [77]. Gastrointestinal symptoms, such as
nausea/vomiting, diarrhea, flatulence, abdominal bloating and dyspepsia have been reported after the
intake of high doses of beverages or extracts (corresponding to 5–6 L of beverage/day) [76]. The intake
of 10–29 mg/kg/day of green tea-based dietary supplements has resulted in liver toxicity due to
oxidative stress and cytotoxic damage [67]. The caffeine content in green tea is low but, depending on
self-sensitiveness to methylxanthines and doses, symptoms such as nervousness, restlessness, tremors,
palpitations, sleep disorders, vomiting, diarrhea, headaches, epigastric pain and tachycardia have also
been reported [67]. In adults an intake of ~300 mg EGCG/day in solid bolus dose and ~700 mg for tea
preparations are considered safe [77]. The vitamin K contained in green tea leaves can antagonize the
effect of anticoagulants [67].

5.2.3. Cocoa and Dark Chocolate

Available Evidence

Cocoa, the main constituent of dark chocolate derives from the Theobroma cacao tree. Dark chocolate
is considered a functional food, due to its content of fatty acids, vitamins, minerals, fiber, several
methylxanthine alkaloids (4% of the dry weight), mainly caffeine and theobromine [78,79] and
polyphenols (12%–18% of dry weight); in particular, flavan-3-ols, (+)-catechin and (−)-epicatechin and
B-type procyanidins [80–82]. Cocoa has been reported to reduce fatty acid synthesis and transport
systems, enhance β-cell function, down-regulate insulin receptor kinase activity, improve peripheral
insulin sensitivity, inhibit digestive enzymes and increase thermogenesis in liver and WAT both in
animals and humans [83–86]. A meta-analysis of human RCTs reported that cocoa/dark chocolate
supplementation do not affect anthropometric measures in adults; however, a subgroup analysis
indicated that ≥30 g dark chocolate per day for at least 4 weeks had favorable effects on weight and
body mass index (BMI) [84]. Studies in mice have reported that procyanidins of cocoa liquor (the pure
cocoa mass derived from cocoa beans), in addition to thermogenic effects, have a role in the prevention
of postprandial hyperglycemia by increasing glucagon-like peptide-1 activity, phosphorylation of the
AMPKα and glucose transporter type-4 translocation in skeletal muscle and BAT [87].

Molecular Mechanisms of Action

Cultured WAT cells of cocoa-fed rats have shown the upregulation of the gene expression of
UCP2, a homolog of UCP1 implicated in non-shivering thermogenesis [83]. Procyanidins affect energy
expenditure by inducing the gene and protein expression of UCPs (UCP1, UCP2 and UCP3), AMPKα

and PGC-1α in adipose, liver and muscle tissues [88]. Once activated, AMPK leads to the inhibition of
energy-consuming biosynthetic pathways, such as fatty acid and sterol synthesis and the activation of
ATP-producing catabolic pathways, such as fatty acid oxidation [89]. PGC-1α increases mitochondrial
biogenesis and the expression of UCPs, promoting fatty acid oxidation as well [88]. Furthermore,
the methylxanthines contained in dark chocolate act as adenosine receptor blockers in vivo [90],
affecting energy expenditure by stimulating basal and noradrenaline-stimulated lipolysis in rat fat
cells [91]. Xanthine derivatives induce secretion of catecholamines, which bind to adipose cells and
increase thermogenesis by increasing the expression of thermogenic genes and releasing free-fatty
acids which, in turn, enhances UCPs [92]. Studies in humans are needed to confirm these mechanisms.

Toxicity and Reactivity

Depending on the percentage of dry cocoa, chocolate may contain trace heavy metals–principally
cadmium and lead–resulting from the contamination of the soil or during manufacturing processes [93].
European Legislation has set the levels to 1 mg/kg for cadmium and 0.3 mg/kg for lead as the maximum
tolerable amount in cocoa powder [94].
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5.2.4. Yerba Mate (Ilex paraguariensis)

Available Evidence

The infusion (mate) derived from the dried leaves of Yerba mate is widely consumed throughout
South America as well as in many other countries. Its numerous beneficial effects are likely due to
the content of several bioactive compounds, such as polyphenols, alkaloids, soaps, triterpenoids,
flavonoids and chlorogenic acid [95,96]. In one placebo-controlled study, an infusion containing 1.5 g
mate dry extract increased REE by almost 5% and resulted in a 5% reduction of the respiratory quotient
in non-obese women and men, probably through increased lipid oxidation capacity [97]. In humans,
pharmacological doses of Yerba mate extracts acutely induced a significant increase in the exercise
energy expenditure due to the preferential use of fatty acids as an energy substrate [98]. Chronically,
these extracts determined an increase in REE, thermogenesis in WAT and a reduction in the WAT
synthesis of fatty acids in mice, leading to weight and fat loss and lower circulating leptin levels [99].

Molecular Mechanisms of Action

Chlorogenic acid, as already reported for green coffee, increases fatty acid oxidation by upregulation
of AMPK [63] and inhibits adipogenesis by down-regulation of the expression of specific genes, such as
Creb-1 and C/EBPa [100]. The increased thermogenic effects after supplementation with Yerba mate
extracts seem to be due to increased mitochondrial genesis and expression of UCPs, resulting in
greater efficiency in the mitochondrial respiratory chain and heat dissipation in mice fed with high-fat
diet [101].

Toxicity and Reactivity

The metabolic effects of Yerba mate have been obtained by using supplements with high doses
of the active compounds, thus not well representing the effect of the natural food for which human
data are still lacking. Toxicological investigations in rats have reported a good tolerability of single
(up to 2 mg/kg dose) and chronic administration of Yerba mate extracts, which seem to be safe for
consumption at dosages up to 300 mg/kg/day in pregnant rats [102,103].

5.2.5. Bitter Orange (Citrus aurantium)

Available Evidence

Citrus aurantium, better known as bitter orange, is an evergreen plant whose fruits have been used
for many centuries both as a food in Southern Europe and as a supplement in traditional medicine
in China and South America [104,105]. These fruits contain alkaloids -particularly synephrine and
octopamine—and other compounds, such as flavonoids -in particular hesperidin, naringin, limonene
and tangaretin—with potential beneficial effects on metabolism and health [106,107]. A few human
studies have demonstrated both an acute thermogenic effect with a statistically significant increase in
REE, DIT and blood catecholamines levels, as well as weight loss and appetite suppression after the
ingestion of bitter orange extracts [104,107–110]. However, long-term data are lacking, as well as data
about the effects of the consumption of the fruit by itself, as the available studies have employed dry
and purified extracts from the orange peel, containing a high dose (~26 mg) of p-synephrine.

Molecular Mechanisms of Action

Synephrine and octopamine, are contemporary α- and β-adrenergic agonists which display
sympathomimetic effects by contributing to oxidative metabolism, lipolysis promotion and β3- and
α-adrenergic receptor stimulation [106]. The anti-adipogenic effects of p-synephrine in 3T3-L1
preadipocytes are due to the regulation of the Akt signaling pathway and the suppression of
adipogenesis-related proteins [111]. After treatment with Citrus aurantium, primary cultured brown
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adipocytes displayed increased differentiation associated with the elevation of thermogenic factors
including UCP1 and PPAR coactivator 1α, by AMPK activation [112].

Toxicity and Reactivity

Case reports, as well as animal and human studies, have provided evidence for cardiovascular
effects due to the ingestion of high synephrine doses contained in supplements, especially in combination
with caffeine [106,109,113]. The dietary exposure occurring through ingestion of the citrus fruits is
much lower, with the median total daily intake of synephrine being up to 6.7 mg/day, and the safety
issues are less evident [109,113].

5.2.6. Ginger

Available Evidence

Ginger (Zingiber officinale) is a plant from the Zingiberaceae family, native to South Eastern Asia,
which is widely used for food, flavoring and as a medicine in China and India historically [114]. A few
small cross-over human trials have studied the effects of ginger on energy expenditure [115,116],
with contrasting results, differently from animal [117–122] or in vitro studies [123], which showed
improved energy expenditure, lower weight gain, increased browning of WAT and promotion of
mitochondrial biogenesis. The contrasting human data, showing either an increased DIT [87] or no
thermogenic effects [116], do not allow us to obtain definitive conclusions.

Molecular Mechanisms of Action

Ginger enhances thermogenesis, increased mitochondrial biogenesis, enhanced BAT function and
activated WAT browning in animals through the activation of the sirtuin-1 (SIRT1)/AMPK/PGC-1α
pathways [118,121,122]. The mRNA expression of Sterol regulatory element-binding protein 1
(SREBP-1c) in the liver and leptin in adipose tissues were downregulated, while those of adiponectin,
hepatic carnitine palmitoyltransferase1 (CPT-1), acyl-coA oxidase (ACO), Glucose transporter 2
(GLUT-2) and pyruvate kinase (PK) were upregulated after ginger treatment in rats, thus supporting an
effect of this compound at the transcriptional level of energy metabolizing proteins [119]. An increase
in cellular fatty acid catabolism via the activation of the PPARδ pathway has been shown in mice
treated with ginger extracts [120].

Toxicity and Reactivity

Apart from characteristic burning sensation felt upon the consumption of ginger [115], no adverse
effects or toxicity has been reported in the human studies. A recent systematic review has also shown
its safety in pregnancy [124].

5.2.7. Curcuma Longa

Available Evidence

Turmeric (Curcuma longa) is an herbaceous plant of the ginger family (Zingiberaceae) that has been
used both as a flavoring and a stimulating agent [125]. Curcumin, also known as diferuloylmethane,
is a natural flavonoid component of turmeric, whose antioxidant, anti-inflammatory, antibacterial,
anticancer, insulin-sensitizing and hypoglycemic properties have been demonstrated in many
studies [126–128]. One animal [129] and one in vitro [130] study showed that curcumin promotes the
browning of WAT, while one observational human study [131] has reported that the supplementation of
an extract of Curcuma reduced the urinary excretion of niacin metabolites and medium- and short-chain
acylcarnitines; thus suggesting the potential induction of mitochondrial β-oxidation of fatty acids for
energy production. Therefore, the evidence relative to a thermogenic role of curcumin is still scarce.
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Molecular Mechanisms of Action

The following mechanisms have reported for curcumin: increase of thermogenic gene expression,
enhanced mitochondrial biogenesis, promotion of the expression of β3-adrenoreceptors with increased
levels of plasma norepinephrine [129], increased levels of hormone-sensitive lipase and p-acyl-CoA
carboxylase with enhanced lipolysis, increased expression of UCP1 by AMPK activation [130] and
upregulation of the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB)
pathway, which plays an important role in energy expenditure and thermogenesis [132].

Toxicity and Reactivity

Turmeric has been reported to contain many toxic, mutagenic, carcinogenic and hepatotoxic
components [133]. Overall, human studies have reported mild adverse effects after curcumin
supplementation, with gastrointestinal upsets being most common [134]. The long-term consumption
of high doses of curcumin may be dangerous and case reports of acute liver injury have been
described [133]. Owing to its inhibitory effect on cytochromes P450, turmeric can potentially interact
with many drugs, such as anticoagulants, antibiotics, cardiovascular drugs, anticancer drugs and
antidepressants and interactions with clopidogrel, warfarin and etoricoxib have been reported [134,135].

5.2.8. Cinnamon

Available Evidence

Cinnamaldehyde is a compound found in cinnamon responsible for its particular flavor, which may
improve metabolism owing to its reported hypoglycemic and lipid-lowering effects [136]. Two small
randomized human clinical trials in healthy subjects showed that the acute ingestion of extracts
of cinnamon (cinnamaldehyde [137] or cinnamyl isobutyrate, respectively [138]) increased energy
expenditure (evaluated by indirect calorimetry) by ~3.6 kcal over 90 min from ingestion [137] or
reduced short-term energy intake by 4.6% [138], when compared to placebo. These changes are too
small to be clinically relevant. Animal studies have demonstrated that extracts of cinnamon elicit
thermogenesis responses [139], reduced visceral adiposity, attenuated hyperphagia and normalized
energy efficiency [140] and attenuated obesity through the modulation of genes implicated in the lipid
metabolism pathways [141]. Currently, chronic studies conducted with the cinnamon amount usually
consumed in an everyday diet are lacking.

Molecular Mechanisms of Action

In rats, cinnamon-linked increased rate of cold adaptive thermogenesis was due to the
elevation in norepinephrine, blood levels of free fatty acid levels and increased expression of UCP1
in BAT [142]. Experimental studies have reported the ability of cinnamaldehyde in activating
phospho-AMPK in adipose tissue [140], enhancing thermogenic and metabolic responses in human
subcutaneous fat cells through a cAMP dependent protein kinase/p38 mitogen-activated protein
kinase (p38 MAPK)-dependent pathway (involved in the transcription of thermogenic genes) [143]
and inducing browning in mice subcutaneous adipocytes by increased expressions of UCP1 and
other brown adipocyte markers and involvement of the β3-adrenoreceptor activity [144]. Finally,
cinnamaldehyde has been shown to activate the transient receptor potential ankyrin 1 (TRPA1),
an ion channel located at the cellular surface, acting as a mechanical and chemical stress sensor, which
is involved in adrenalin secretion [145].

Toxicity and Reactivity

Cinnamon is obtained from different tree species of the genus Cinnamomum: Chinese cinnamon
(Cinnamomum cassia or Cinnamomum aromaticum), coming from the East and containing high level of
coumarin, with potential harmful effects [146]; and Ceylon cinnamon (Cinnamomum zeylanicum or
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Cinnamomum verum), coming from Sri Lanka and Madagascar, which contains only trace amounts of
coumarin. Hepatotoxicity, effects of coumarin on coagulation and potential interference with drugs
and mild adverse events have been reported for Chinese cinnamon, while, the consumption of Ceylon
cinnamon seems safe [147–149].

5.2.9. Chili Pepper (Capsicum Species)

Available Evidence

Chili peppers are common food flavoring, which are also used as a traditional medicine in some
cultures [150,151]. Chilis contain pungent capsaicinoids (capsaicin and dihydro-capsaicin), the major
bioactive compounds responsible for the hot taste sensation, non-pungent capsaicin analogs, named
capsinoids (e.g., capsiate, dihydro-capsiate and nordihydro-capsiate); and antioxidants, vitamins and
carotenoids [150]. Studies in humans investigating a wide range of chili doses have shown that the
weight-loss properties of chili are due to enhanced energy expenditure and thermogenesis [152,153].
Conflicting results have been found on the properties of capsaicin and capsiate in decreasing
the respiratory quotient by enhancing fat oxidation, due to the different designs of the studies,
the body composition and BMI of the subjects included and the habitual consumption of chili in their
diet [152–154]. Interestingly, the consumption of 2.56 mg of capsaicin (1.03 g of dried red chili pepper)
per meal was able to mitigate the unfavorable negative energy balance effect of decrease in DIT and
REE induced by a 25% caloric restriction in humans [155]. However, the doses required to impact
metabolism is high and out of the tolerated range for most people [137].

Molecular Mechanisms of Action

In mice, dietary capsaicin activated thermogenesis in WAT by up-regulating the expression of
SIRT1 and PGC-1α, both of which increase the expression of UCP1 and bone morphogenetic protein-8b,
resulting in energy dissipation by thermogenesis, increased EE and metabolic activity [156]. Both in
mice and humans, capsaicin and capsinoids enhance energy expenditure by triggering BAT through
multiple mechanisms, such as the stimulation of non-shivering thermogenesis by binding to TRPV1,
stimulation of the SNS and catecholamine secretion from the adrenal gland [19,137,152–154,156,157].

Toxicity and Reactivity

In humans, one milligram of capsaicin has neither adverse effects nor affects energy
expenditure [137]. Side effects with higher doses of capsaicin, even when provided in capsule
form (up to 135 mg/day) include low palatability, gastric distress, dyspepsia, anal burning, bowel
irregularities and diarrhea [153]. Capsiate is more tolerable due to its non-pungent characteristics
deriving from rapid hydrolysis in the oral cavity, with reduced accessibility to nociceptors [153,154].

5.2.10. Garcinia cambogia

Available Evidence

Garcinia cambogia is an herbal product derived from the fruit of the Malabar tamarind tree
(also called Garcinia gummi-gutta) native to India, Nepal and Sri Lanka [158]. The fruit rind is used
either as food preservative, flavoring agent, food-bulking agent or traditional medicine in many
Asian countries [159]. Garcinia contains xanthones, benzophenones, amino acids and organic acids, of
which hydroxy-citric acid (HCA) accounts for 10%–30% of the weight of Garcinia fruit and 20%–60% of
the extract [158].

Studies with different duration of administration and doses of Garcinia cambogia or its extract,
were performed both in animals and humans with conflicting results. Favorable effects of Garcinia cambogia
on glucose and lipid metabolism, as well as on appetite reduction, have been reported [159–161].
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However, no beneficial effect on EE has been found at different doses and durations of HCA
supplementation in human trials, both in the short period and up to 12 weeks [162–164]. A recent
meta-analysis of human trials failed to find a significant weight-loss effect of supplementation with
Garcinia cambogia [165].

Molecular Mechanisms of Action

In animal studies, supplementation with HCA induced energy expenditure acceleration by the
activation of the adiponectin AMPK signaling pathway [166] or through the regulation of thyroid
hormone levels [167]. HCA inhibits serotonin uptake leading to satiety and reduced food intake and
down-regulates ATP-citrate lyase, increasing fat oxidation and decreasing de novo lipogenesis [159–161].

Toxicity and Reactivity

Supplements containing a standardized dose (e.g., 300–500 mg) of Garcinia cambogia-derived
HCA, consumed up to three times daily, are considered safe [160]. In one human trial, HCA has been
supplemented with doses up to 5600 mg/day without adverse effects [168]. However, case reports have
described severe hepatotoxicity, including acute liver failure requiring liver transplantation and acute
necrotizing eosinophilic myocarditis in subjects using pure Garcinia cambogia supplements [169–172].
A natural product for weight loss containing Garcinia cambogia and a variety of other ingredients has
been associated to fatigue, nausea, vomiting, colic, fever, chills, anorexia, abdominal pain, jaundice,
increased levels of liver enzymes and bilirubin in healthy adults [173]. Liver toxicity has been associated
with both cholestatic and hepatocellular patterns of injury.

5.2.11. Guarana (Paullinia cupana)

Available Evidence

Guarana is a plant native to the Amazon basin, which is largely used by beverage industries [174].
Guarana seeds contain the highest percentage (2%–8%) of caffeine, compared to any other plant, a high
concentration of polyphenols (particularly proanthocyanidins) and small quantities of other stimulant
purine alkaloids, such as theobromine and theophylline [174,175]. Two human RCTs reported increased
energy expenditure [176] and short-term weight and fat loss [177] after Guarana extract administration.
In one animal study, Guarana seed powder supplementation prevented weight gain, insulin resistance
and adipokine dysregulation induced by a Western diet [178]. However, conclusive results regarding
Guarana supplementation on weight management are still lacking.

Molecular Mechanisms of Action

Guarana exerts an anti-adipogenic activity by down-regulating the expression of pro-adipogenic
genes, up-regulating the expression of anti-adipogenic genes and increasing β-catenin nuclear
translocation, which may contribute to adipogenesis inhibition [179]. Guarana induced BAT expansion,
mitochondrial biogenesis, UCP1 overexpression, AMPK activation and minor changes in gut microbiota
in rats [178]. Metabolic effects after Guarana supplementation are mainly due to its high caffeine content.

Toxicity and Reactivity

The European Medication Agency (EMA) recommends a maximum intake of 2250 mg/day of
Guarana extract, due to its high percentage of caffeine, which is considered safe up to a dose of
400 mg/day [64–66]. Supplements containing guarana, together with multiple ingredients—above
all, high doses of caffeine—have determined agitation, anxiety, insomnia, aggressivity, decreased
blood bicarbonate and tachycardia up to cardiorespiratory arrest [66,180]. In rats, pharmacological
interactions have been reported after administration of guarana supplements, either with central
nervous system stimulants or lamotrigine and amiodarone, leading to exacerbation of seizures and
risk of arrythmias [66].
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5.2.12. Brassicaceae

Available Evidence

Broccoli is a vegetable of the Brassicaceae (or Cruciferae) family, which contain sulfur-based
compounds named glucosinolates [181]. These compounds are hydrolyzed to biologically active
isothiocyanates (ITC) by the action of myrosinase, a vegetable enzyme present in the human gut
microbiota [182,183]. Glucoraphanin, the predominant glucosinolate in broccoli, releases the ITC
sulforaphane (SFN) [184]. A 100-g serving of fresh broccoli can release 37–75 mg of SFN, but a
therapeutic dose of SFN may not be achieved by a regular diet, as transportation, storage conditions,
preparations and cooking, may decrease the vegetable content of SFN [182]. In vitro and animal studies
have reported a beneficial effect of SFN on lipid metabolism and thermogenesis [185–188], as well as
on gut microbiota [189]. However, extrapolating these results to humans is difficult because studies
are still lacking.

Molecular Mechanisms of Action

In vitro studies have shown that SFN can induce apoptosis in adipocytes [185], inhibit adipocyte
differentiation and promote lipolysis in adipocytes [186]. Both glucoraphanin and SFN exert
thermogenic effects. SFN increased both mitochondrial biogenesis and function by up-regulating
nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) /SIRT1/ PGC-1α signaling [187], as well as
enhancing UCP1 expression through the activation of the Nrf2; thus promoting browning of WAT [188].

Toxicity and Reactivity

Brassicaceae are considered a goitrogenic food due to the ability of the goitrin, a molecule
derived from myrosinase hydrolysis of the glucosinolates progoitrin, to inhibit iodine utilization by the
thyroid [190]. It is worth noting that the effects of overactivation of the Nrf2-related metabolic pathways
are controversial, as the worsening of insulin resistance, as well as glucose and lipid metabolism, have
been reported in mice [191].

5.2.13. Nuts

Nut-rich diets have been proved to provide positive effects, both on cardiovascular health (owing to
their content of mono- and polyunsaturated fats, flavonoids and vitamins) and on body weight, BMI or
waist circumference [24,192]. At present, the role of nuts in the regulation of energy balance has not
been extensively studied; however, favorable effects have been reported by a couple of RCTs [51,193].
In particular, a 28% increase in DIT 5 h after a meal rich in walnuts and a ~100 kcal higher BEE after
2 months of a nut-rich diet (independent of weight change) have been observed [193]. The role of
peanuts is even more uncertain as, in a small RCT, the consumption of high-oleic peanuts increased
DIT more than conventional peanuts, but similarly to controls consuming biscuits [194].

5.2.14. Apple Cider Vinegar

Apple cider vinegar is a rich source of polyphenols and acetic acid [195]. A systematic review and
metanalysis of human trials failed to reach conclusive results on short and long-term blood glucose
control after the administration of a wide range of dosages of apple cider vinegar [196]. At present,
studies about the effects of apple cider vinegar on human energy expenditure are lacking. In Wistar
rats subjected to a high-fat diet, the supplementation of apple cider vinegar (7 mL/kg/day) for 30 days
reduced BMI, abdominal circumference and improved satiety [197]. In vitro, acetic acid upregulates
the expression of genes for fatty acid oxidation enzymes and thermogenic proteins (e.g., ACO, CPT-1,
and UCP2 through α2-AMPK/PPARα-mediated pathway [198]. The lack of human studies on the role
of apple cider vinegar on energy balance makes it impossible to draw conclusions about the potential
effects of this food.
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5.2.15. Spirulina

Spirulina refers to a large number of photosynthetic eubacterial species belonging to the phylum
Cyanobacteria (Arthrospira platensis and A. maxima) [158]. These microscopic blue-green algae are
a source of high-quality proteins, and contain nearly all essential amino acids, vitamins, minerals,
fiber and bioactive compounds [199]. A metanalysis of five human trials (278 subjects) found that
the chronic administration of spirulina at variable doses (from one to 4.5 g/day) significantly reduced
body weight, body fat percentage and waist circumference [200]. Interestingly, the weight loss was not
dose-dependent and was higher in patients with obesity rather than in those with overweight [201].
Many beneficial effects, both on glucose and lipid metabolism and oxidant status, have been described in
human studies [200–202]. However, no data about the potential role of spirulina on energy expenditure
are available; therefore, at present, no compelling evidence on this topic is available.

5.2.16. Foods without Scientific Evidence to Date

A long list of foods that have been proposed as “fat-burning” or “slimming” agents have not
been the subject of scientific studies supporting these supposed benefits. Among these are pineapple,
bitter pumpkin (Momordica charantia), mangosteen, Griffonia simplicifolia, Rhodiola rosea, Hoodia gordonii,
Fucus vesciculosus, Cissus quadrangularis, Irvingia gabonensis, yohimbine, Caralluma fimbriata, Coleus forskohlii
and avocado (Persea americana). These foods do have other potential beneficial properties for human
health but, to date, their effectiveness in inducing weight loss is far from proven.

5.3. The Role of Diet Plans

A few human trials have compared the individual energy expenditure under different dietary
regimens. A systematic review and meta-analysis of 32 controlled-feeding studies with 563 participants
found no effects on TEE of low-carb versus low-fat diets with equivalent protein content [203].
A few RCTs found a significantly lower TEE decrease with low-carb diets when compared either
to high-carb [204] or low-fat [205] diets. However, the pooled weighted mean difference in energy
expenditure reported in the metanalysis was negligible (26 kcal/day) and favoring low-fat diets [203].

More recently, Ebbeling et al. measured TEE with doubly labeled water in 162 overweight/obese
adults randomized to three diets with similar protein and energy content but different carbohydrate
percentage (high, 60%; moderate, 40%; and low, 20%) [206]. TEE was increased by 52 kcal/day for
every 10% decrease in the proportion of carbohydrates from the diet [206]. Participants following the
low-carb diets showed significantly lower circulating leptin and ghrelin levels, affecting both hunger
and energy expenditure [207,208]. This study supported the so-called “carbohydrate-insulin model”,
according to which a reduced proportion of dietary carbohydrate drives lower insulin secretion and
increases fat mobilization and oxidation, thus leading to enhanced energy expenditure [209–211].
However, this trial has been criticized due to deviations from the planned analyses, the inclusion of
subjects with excessive unaccounted energy and other methodological problems [212].

Therefore, more extensive and methodologically rigorous trials are needed before definitive
conclusions on this topic can be reached. At present, the recommendation of combining a proven
healthy diet with a daily exercise to obtain/maintain an adequate body muscle mass remains the best
method to prevent a decline in energy expenditure after weight loss.

6. The Impact of the Gut Microbiota on the Human Energy Balance

The gut microbiota, which is the microbial community populating the digestive tract, regulates
both metabolism and energy balance in a symbiotic relationship with the human host. Micro-organisms
extract energy from foods that humans cannot digest, producing bioactive compounds such as
short-chain fatty acids (SCFAs)—mainly acetate, propionate and butyrate—which supply energy to the
intestinal epithelium and liver, providing ~10% of the daily caloric requirement [213]. The microbiota
regulates energy balance through different mechanisms: gut–brain axis control at both the level of
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intestinal nutrient-sensing mechanisms, as well as at the central nervous system integration sites;
development of a low-grade chronic systemic and adipose inflammation together with abnormal gut
permeability by an increased relative abundance of pathogenic bacteria; effects on the metabolism of bile
acids, with the production of secondary bile acids activating thyroid hormones and oxygen consumption;
and impaired secretion of gut peptides and hormones implicated in appetite regulation [214–216].
Alterations in gut–brain signaling can affect the regulation of food intake and SCFAs impact on
the incretins and hormones implicated in energy homeostasis, such as glucagon-like-peptide 1,
gastric inhibitory peptide, peptide YY, leptin and insulin [217]. The gut microbiota of obese mice
has been shown to display a higher capacity to harvest energy from the diet and genes related to
phosphotransferase systems involved in microbial carbohydrate processing have been found to be
increased in both obese mice and humans [215]. Indeed, the relevance of these processes in the energy
balance control has been discussed [218] and an increased pro-inflammatory microbiota, together
with the impaired secretion of gut peptides and hormones, seem to be the main mechanisms linking
dysbiosis to the occurrence of dysmetabolic diseases [215].

Data relative to the role of microbiota in energy expenditure are controversial. The SCFA turnover
has been estimated to account for approximately 7% of REE [219], while gut microbiota composition
was not associated with REE level [220].

Supplementation with butyrate enhanced energy expenditure in mice by induction of
mitochondrial function in brown fat and skeletal muscle, with increased thermogenesis and fatty acid
oxidation [221]. Supplementation with acetate, the most abundant SCFA in the colon (accounting for
more than half of the total fecal SCFAs), induced browning by altering the expression of genes
involved in beige adipogenesis [222]. An altered nutrient load induced rapid changes in the
human gut microbiota composition, these changes being directly associated with stool energy
loss in lean individuals, such that a 20% increase in Firmicutes and a corresponding decrease in
Bacteroidetes was associated with an increased energy harvest of ≈150 kcal [8]. The bacterial endotoxin
lipopolysaccharide—produced by the large gut community of Gram-negative bacteria—binds and
activates Toll-like receptor 4, leading both to the repression of adaptive thermogenesis through
endoplasmic reticulum stress-mediated mitochondrial dysfunction [223], and the suppression of
white adipose tissue browning [224]. Intriguingly, obesity-induced alterations of the gut microbiome
persist after successful dieting in obese mice and contribute to weight regain, as persistent dysbiosis
contributes to diminishing post-dieting flavonoid levels and reducing energy expenditure [225].

Recently, a stratification of individuals in enterotypes by gut microbiota composition has been
proposed, with the most important patterns being the P-type (dominated by Prevotella) and the B-type
(dominated by Bacteroides), which probably exist as a continuum, rather than separate entities [226].
The P-type—characterized by hydrolase activity—has been associated with a high-fiber and resistant
starch rich diet; while the B-type—characterized by saccharolytic and proteolytic capacity—has been
associated with high-fat, low-fiber, Western-type diets [226]. In response to arabinoxylans from grain
bran, P-type individuals produced larger amount of SCFAs (especially propionate) and showed higher
weight loss and improvements in glucose metabolism when compared to B-type individuals [227–229].
On the other hand, B-type individuals lose more weight on a bifidogenic diet (rich in inulin and
oligosaccharides) [226]. Should these data be confirmed in larger samples, they suggest a differential
individual response to the same food, according to gut microbiota composition and ability to metabolize
food, extracting more or less energy from it. This is in line with emerging concepts of a need for
personalized nutrition [230]. Furthermore, complexity in individual microbiota introduces variability
and errors in the measurement of energy expenditure, which usually are not considered and controlled
for, making prediction of the effects of nutrition on the human energy balance extremely complex [11].

7. Conclusions

In Western societies, the availability of highly processed food and general lifestyle have concurred
to generate an obesity pandemic. In attempts to address unavoidable weight gain, the general
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population has been fascinated by foods that can increase energy expenditure. However, only a few
foods can potentially affect energy expenditure—usually when consumed in much higher amounts than
those usually consumed. In humans, energy balance is complex and multifactorial and physiological
compensation occurs with changes in energy intake and/or expenditure. Moreover, other factors
such as microbiota composition and activity are involved, influencing food metabolism and nutrient
utilization. Any attempts to classify diets and foods based on supposed roles in energy balance implies
an excessive simplification of real biologic complexity, which we are just beginning to understand.
Long-term and well-designed human intervention trials in different population groups are important
to draw any conclusions on the effect of foods and dietary regimens in energy balance.
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