1,043 research outputs found

    A Discrete Four Stroke Quantum Heat Engine Exploring the Origin of Friction

    Get PDF
    The optimal power performance of a first principle quantum heat engine model shows friction-like phenomena when the internal fluid Hamiltonian does not commute with the external control field. The model is based on interacting two-level-systems where the external magnetic field serves as a control variable.Comment: 4 pages 3 figure

    Improving the Efficiency of an Ideal Heat Engine: The Quantum Afterburner

    Full text link
    By using a laser and maser in tandem, it is possible to obtain laser action in the hot exhaust gases involved in heat engine operation. Such a "quantum afterburner" involves the internal quantum states of working gas atoms or molecules as well as the techniques of cavity quantum electrodynamics and is therefore in the domain of quantum thermodynamics. As an example, it is shown that Otto cycle engine performance can be improved beyond that of the "ideal" Otto heat engine.Comment: 5 pages, 3 figure

    A quantum-mechanical Maxwell's demon

    Get PDF
    A Maxwell's demon is a device that gets information and trades it in for thermodynamic advantage, in apparent (but not actual) contradiction to the second law of thermodynamics. Quantum-mechanical versions of Maxwell's demon exhibit features that classical versions do not: in particular, a device that gets information about a quantum system disturbs it in the process. In addition, the information produced by quantum measurement acts as an additional source of thermodynamic inefficiency. This paper investigates the properties of quantum-mechanical Maxwell's demons, and proposes experimentally realizable models of such devices.Comment: 13 pages, Te

    Properties of optimal gauges in multi-mode cavity QED

    Full text link
    Multi-mode cavity quantum electrodynamics (QED) describes, for example, the coupling between an atom and a multi-mode electromagnetic resonator. The gauge choice is important for practical calculations in truncated Hilbert spaces, because the exact gauge-invariance is recovered only in the whole space. An optimal gauge can be defined as the one predicting the most accurate observables for the same number of atomic levels and modes. Different metrics quantifying the gauge performance can be introduced depending on the observable of interest. In this work we demonstrate that the optimal choice is generally mode-dependent, i.e., a different gauge is needed for each cavity mode. While the choice of gauge becomes more important for increasing light-matter interaction, we also show that the optimal gauge does not correspond to the situation where the entanglement between light and matter is the smallest.Comment: 8 pages, 5 figure

    L\'evy Distribution of Single Molecule Line Shape Cumulants in Low Temperature Glass

    Full text link
    We investigate the distribution of single molecule line shape cumulants, κ1,κ2,...\kappa_1,\kappa_2,..., in low temperature glasses based on the sudden jump, standard tunneling model. We find that the cumulants are described by L\'evy stable laws, thus generalized central limit theorem is applicable for this problem.Comment: 5 pages, 3 figure

    Performance of discrete heat engines and heat pumps in finite time

    Get PDF
    The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure

    Reply to Comment on "Completely positive quantum dissipation"

    Full text link
    This is the reply to a Comment by R. F. O'Connell (Phys. Rev. Lett. 87 (2001) 028901) on a paper written by the author (B. Vacchini, ``Completely positive quantum dissipation'', Phys.Rev.Lett. 84 (2000) 1374, arXiv:quant-ph/0002094).Comment: 2 pages, revtex, no figure
    corecore