2,952 research outputs found

    Commutativity properties of Quinn spectra

    Full text link
    We give a simple sufficient condition for Quinn's "bordism-type" spectra to be weakly equivalent to commutative symmetric ring spectra. We also show that the symmetric signature is (up to weak equivalence) a monoidal transformation between symmetric monoidal functors, which implies that the Sullivan-Ranicki orientation of topological bundles is represented by a ring map between commutative symmetric ring spectra. In the course of proving these statements we give a new description of symmetric L theory which may be of independent interest

    Midbrain areas as candidates for audio-vocal interface in echolocating bats

    Get PDF

    Unconditional quantum cloning of coherent states with linear optics

    Full text link
    A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3.Comment: Phys. Rev. Lett. Volume 94, Number 24, p. 24050

    Exact solutions in Einstein-Yang-Mills-Dirac systems

    Get PDF
    We present exact solutions in Einstein-Yang-Mills-Dirac theories with gauge groups SU(2) and SU(4) in Robertson-Walker space-time R×S3R \times S^3 , which are symmetric under the action of the group SO(4) of spatial rotations. Our approach is based on the dimensional reduction method for gauge and gravitational fields and relates symmetric solutions in EYMD theory to certain solutions of an effective dynamical system. We interpret our solutions as cosmological solutions with an oscillating Yang-Mills field passing between topologically distinct vacua. The explicit form of the solution for spinor field shows that its energy changes the sign during the evolution of the Yang-Mills field from one vacuum to the other, which can be considered as production or annihilation of fermions. Among the obtained solutions there is also a static sphaleron-like solution, which is a cosmological analogue of the first Bartnik-McKinnon solution in the presence of fermions.Comment: 18 pages, LaTeX 2

    Shortcomings of the Bond Orientational Order Parameters for the Analysis of Disordered Particulate Matter

    Get PDF
    Local structure characterization with the bond-orientational order parameters q4, q6, ... introduced by Steinhardt et al. has become a standard tool in condensed matter physics, with applications including glass, jamming, melting or crystallization transitions and cluster formation. Here we discuss two fundamental flaws in the definition of these parameters that significantly affect their interpretation for studies of disordered systems, and offer a remedy. First, the definition of the bond-orientational order parameters considers the geometrical arrangement of a set of neighboring spheres NN(p) around a given central particle p; we show that procedure to select the spheres constituting the neighborhood NN(p) can have greater influence on both the numerical values and qualitative trend of ql than a change of the physical parameters, such as packing fraction. Second, the discrete nature of neighborhood implies that NN(p) is not a continuous function of the particle coordinates; this discontinuity, inherited by ql, leads to a lack of robustness of the ql as structure metrics. Both issues can be avoided by a morphometric approach leading to the robust Minkowski structure metrics ql'. These ql' are of a similar mathematical form as the conventional bond-orientational order parameters and are mathematically equivalent to the recently introduced Minkowski tensors [Europhys. Lett. 90, 34001 (2010); Phys. Rev. E. 85, 030301 (2012)]

    Transverse angular momentum of photons

    Full text link
    We develop the quantum theory of transverse angular momentum of light beams. The theory applies to paraxial and quasi-paraxial photon beams in vacuum, and reproduces the known results for classical beams when applied to coherent states of the field. Both the Poynting vector, alias the linear momentum, and the angular momentum quantum operators of a light beam are calculated including contributions from first-order transverse derivatives. This permits a correct description of the energy flow in the beam and the natural emergence of both the spin and the angular momentum of the photons. We show that for collimated beams of light, orbital angular momentum operators do not satisfy the standard commutation rules. Finally, we discuss the application of our theory to some concrete cases.Comment: 10 pages, 2 figure
    • …
    corecore