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Abstract 

Responses of auditory neurons to complex Stimuli were recorded in the dorsal belt region of the auditory cortex 
of two taxonomically unrelated bat species, Rhinolophus rouxi and Pteronotus parnellii parnellii, both showing 
Doppler shift compensation behaviour. As in P.p.parnellii (Suga et ai, J. Neurophysiol., 49, 1573-1626, 1983), 
cortical neurons of R.rouxi show facilitated responses to pairs of pure tones or frequency modulations. Best 
frequencies for the two components lie near the first and second harmonic of the echolocation call but are in 
most cases not harmonically related. Neurons facilitated by pairs of pure tones show little dependence on the 
delay between the Stimuli, whereas pairs of frequency modulations evoke best facilitated responses at distinct 
best delays between 1 and 10 ms. Facilitated neurons are found in distinct portions of the dorsal cortical belt 
region, with a segregation of facilitated neurons responding to pure tones and to frequency modulations. Non-
facilitated neurons are found throughout the field. Neurons are topographically aligned with increasing best delays 
along a rostrocaudal axis. The best delays between 2 and 4 ms are largely overrepresented numerically, and 
occupy ~ 56% of the cortical area containing facilitated neurons. A functional Interpretation of the large 
overrepresentation of best delays ~ 3 ms is proposed. Facilitated neurons are located almost entirely within layer 
V of the dorsal field. 

Introduction 

The mammalian auditory cortex is composed of a number of subdivisions 
or ' f ields ' , whose borders are distinguished both physiologically and 
morphologically (Woolsey and W a l z l , 1941; Brügge and Merzenich, 
1973; Merzenich et ed., 1975; Reale and Imig, 1980; Suga, 1984). 
Unfortunately, the functional significance of the the various fields has 
for most species remained relatively obscure. In cats, for example. at 
least five cortical fields are definable by the presence in each of a complete 
cochleotopic (tonotopic) map. However, other than a recent report 
showing that neurons in the anterior auditory field are able to encode 
higher frequencies of amplitude modulation than neurons in primary field 
A I (Schreiner and Urbas, 1988), little further functional differentiation 
of these apparently redundant representations has been reported. 

There is a growing body of evidence from certain species of 
echolocating bats. especially Pteronotus p a r n e l l i i , showing that different 
cortical fields may perform distinctly different Functions. The moustached 
bat belongs to an aeoustieally categorized group called ' long C F / F M ' 
bats. Bats in this group emit pulses which always contain a long-duration 
constant frequency (CF) component terminated by a downward sweeping 
frequency modulation ( F M ) , and in some species a number of harmonics. 

The auditory cortex of the moustached bat can be subdivided into a 

number of functional processing areas ( O ' N e i l l and Suga, 1982; Suga 
et c//., 1983a; Suga, 1984). The *core' region is tonotopically organized 
following the pattern seen in other mammals, but contains zones where 
small bands of frequencies are enormously overrepresented (Suga and 
Jen, 1976; Suga and Manabe, 1982; Asanuma et al., 1983). 

Outside this tonotopically organized area, the units have more complex 
response properties, and show e.g. facilitation to combinations of two 
or more elements found in the biosonar signal (Suga et al., 1979; Suga 
et al., 1983a). Units in the ' F M - F M ' dorsal fringe and ventral fringe 
areas are facilitated by, and tuned to, the time interval between pairs 
o f F M sweeps ( O ' N e i l l and Suga, 1979; O ' N e i l l and Suga, 1982; Suga 
and Horikawa, 1986). Areas containing ' F M - F M facilitation neurons' 
are 'chronotopically' organized to represent these time intervals, thereby 
forming neural maps of the target ränge (Suga and O ' N e i l l , 1979; O 'Ne i l l 
and Suga, 1982; Suga and Hor ikawa, 1986). 

Units in the C F / C F cortical field, on the other hand, are facilitated 
by pairs of near-harmonically related C F Signals. The timing between 
the C F components, as long as they overlap to some extent, is not critical 
(Suga etal., 1978, 1979, 1983b). 

Both types of 'combination-sensitive' neurons are facilitated by pairing 
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an acoustic component of the first harmonic with one of the higher 
harmonics in the sonar signal. Neurons facilitated by pairs of elements 
from the same harmonic are extremely rare (e.g. Suga, 1978). Similar 
elaborate cortical specializations have been found in other bat species. 
although single-unit response properties and topographical Organization 
differ from those found in P . p a r n e l l i i (Sullivan, I982a,b; Wong and 
Shannon, 1988; Berkowitz and Suga, 1989). 

Phylogenet ica l ly , the moustached bat (New W o r l d family 
Morrnoopidae) and the horseshoe bats (Old Wor ld family Rhinolophidae) 
are not closely related. Behaviorally, however, these species show strong 
convergence. Both use an unusual biosonar signal (long C F / F M ) 
dominated by narrow-band (CF) elements. Both perform 'Doppler-shift 
compensation' (Schnitzler, 1968, 1970; Schuller et al., 1974) to stabilize 
echoes at particular 'reference' frequencies to which their ears are 
extraordinarily sharply tuned, and both have similar foraging strategies 
(Link et al., 1986; Beiwood and M o r r i s , 1987). 

The horseshoe bat cortex is also organized into a 'core-belt' 
arrangement (Ostwald, 1980, 1984; Schweizer and Radtke, 1980; 
S.Radtke-Schuller, unpublished). In this study, we have explored the 
belt areas in the rufous horseshoe bat, R.rowci, to determine whether 
its cortex shows similarities in Organization to the moustached bat. In 

a companion paper, we examine the anatomical features of the cortical 
regions in the horseshoe bat which contain these similarly functioning 
neurons. W e compare these results to the relevant regions of the 
moustached bat cortex, which to date have not been anatomically 
described. Some of the data have been reported previously (Schuller 
et al., 1988). 

Materials and methods 

Five Indian or Sri Lankan rufous horseshoe bats, R . r o u x i , and five 
Jamaican moustached bats, P . p . p a r n e l l i i , were used in these studies. 
Bats were kept in captivity under seminatural conditions for under a year. 
The animals were surgically prepared under halothane anaesthesia. The 
skin overlying the skull was additionally infused with local anaesthetic 
(Novocain). The skin was cut along the midline and reflected to the sides 
in order to affix, with dental cement, a tube that was attached to the 
stereotaxic device during experiments. The tube was glued to the caudal 
part of the skull overlying the inferior colliculi and the cerebellum. Rostrai 
to the fixation tube, the tissue was carefully cleaned from an area of 
skull —1.5 m m left and right o f the midline. This area was used to 
determine the position of the skull surface in stereotaxic coordinates and 
to place holes to introduce the recording electrode. After surgery, the 
animals were allowed to recover through the following day. Throughout 
the experiments, the wound margins were treated with local anaesthetic 
(Novocain), but the animals were otherwise unanaesthetized. 

The experiments were conducted in an acoustic Chamber lined with 
convoluted foam, which reduces acoustical interference from the 
environment and minimizes the reflections o f ultrasonic Signals. The 
animals were placed in a holder which prevented gross body movements, 
and the head was immobil ized by attaching the surgically affixed tube 
to a head holder that allowed accurate repositioning ( < 10 /im) of the 
animal in the stereotaxic device throughout the recording series, which 
lasted for several weeks. The orientation of the brain within the 
stereotaxic coordinate System was determined by automatically scanning 
the profile of the exposed skull in both the parasagittal and transverse 
directions. Details of the stereotaxic device, the procedures to determine 
the skull position, and the reconstruction of the recording sites are 
described elsewhere (Schuller et al., 1986). The method yields a typical 

FIG. 1. Surface projection procedure demoastrated on a frontal atlas section. The 
curvature of layer IV was fitted with straight and circular segments so that the 
transitions between segments were smooth (i.e. same slope at transition point) 
and that a good approximation was reached with a minimal number of segments. 
Location of cells ( 0 ) or cytoarchitectural boundaries are projected perpendicularly 
through the fitted line segments of layer IV, and then to the approximated surface 
of the cortex. The distance from the origin (arbitrarily fixed at 1000 ( i m lateral 
from the midline of the brain) is straightened out and marked on a line representing 
the hypothetical flattened cortical surface. Surface prqjections avoid distance and 
area distortions due to different curvature of the cortex. 

accuracy for the localization of recording sites of 100 /tm in all three 
dimensions. Localization of the recording sites within the brain was 
further verified by injection of tracer substances. such as horseradish 
peroxidase or wheat-germ agglutinin conjugated with horseradish 
peroxidase, or by making small electrolytic lesions. The measurements 
of the skull position in stereotaxic coordinates were made during a short 
( - 1 h) session on the first postoperative day. The recording experiments 
started on the second postoperative day with daily sessions no longer 
than 6 h, which could be repeated over 3 weeks (typically; maximally 
up to 7 weeks). T o prepare the animal for single-unit recording, a small 
hole was cut into the skull over the target area and the dura was perforated 
under local anaesthesia. The holes had diameters typically <500 fim 
and several electrode penetrations with different mediolateral inclinations 
(roughly parallel to the cortical surface) were made through each hole. 
The positions of the penetrations were all referred to a common reference 
point, thus allowing a computational reconstruction in coordinates of 
the respective brain atlases (Radtke-Schuller, unpublished). 

For single-unit recording, Parylene-coated tungsten electrodes with 
impedances between 1.8 and 2.5 M Q (Mic ro Probe Inc.) were lowered 
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FIG. 2. Representative examplcs of neurons showing facilitated response to combinations of two Stimulus components (frames in the centre row). The responses 
to either Stimulus component alone is represented in the Upper (low-frequency component) and lower (high-frequency component) frames. In the left column the 
combination of two constant-frequency components (CF/CF) elicits facilitated responses. Facilitation by two frequency modulated components (FM-FM) is shown 
in the centre column. Facilitation by either CF/CF or F M - F M combinations (CFM/CFM or mixed type) is shown on the right. Each frame shows the temporal 
occurrence of Spikes in both a dot display (top) and a peristimulus time histogram (bottom). The onset of the Stimulus is delayed by 10 ms with respect to the System 
trigger (vertical thin lines) and the Stimulusends at the heavy vertical line (shown only in the dot display section). Stimulus type, frequency and amplitude are indicated 
at the top of each frame. 

from the surface o f the brain in steps of 2 /-im, using a piezoelectric 
micropositioner (Burleigh Inchworm). The exposed electrode tips had 
diameters of — 1— 2 / i m and lengths o f 5 —10/ im . A n indifferent 
electrode (sharpened tungsten wire) was chronically implanted during 
the initial surgery in contact with the brain surface under the most anterior 
part of the skul l . The action potentials were amplified, filtered and 
amplitude-discriminated with conventional methods. The temporal 
occurrence of spikes was recorded relative to the onset of the acoustic 
Stimuli and could be displayed either as a dot raster or as peristimulus 
time histograms. Acoustic Stimuli with a fixed or a Single, stepwise-
varying parameter were presented. Each frame, or 'segment', consisted 
of either 32 or 64 presentations. Recording and processing programs 
were run on a D E C LSI11/23 Computer. A l l programs were written by 
M . Betz. 

Acoustic Stimuli were generated by passing sine waves from function 
generators (Wavetek) through custom made electronic switches shaping 
the Stimuli into bursts with a 1 ms rise —fall time. Typica l ly , the 
frequency within the Stimulus could be either constant, mimicking the 

C F portion of the echolocation call , a linear downward sweep, modelling 
the final F M portion o f the echolocation ca l l , or a combination of both 
waveforms, forming a C F - F M replica of the echolocation call. Stimulus 
duration was 28 and 3 ms for the C F and F M components, respectively. 
St imuli from two Channels could be broadcast together at adjustable 
interstimulus delays and with independently controlled amplitudes and 
frequencies. The frequency of each Stimulus and the interstimulus time 
delay could be changed stepwise with different stepwidths during one 
recording frame, thus allowing an immediate evaluation of frequency-
or delay-dependent responses. In addition, harrnonically related Stimuli, 
sinusoidally frequency-modulated Stimuli and narrow-bandwidth noise 
Stimuli could be presented. The acoustic Stimuli were reproduced by 
a 2 cm diameter electrostatic loudspeaker located 3 0 ° contralateral to 
the recording site and 15 cm away from the bat's ears. The elevation 
of the loudspeaker was adjusted to place it perpendicular to the plane 
of the nose leaf (the position o f greatest sensitivity of the ear at the 
reference frequency). 

Fo r the determination of the individual resting frequency of the bats, 
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FIG. 3. Frequency dependence of facilitation for CF/CF (left), F M - F M (centre) and mixed type (CFM/CFM) neurons (right). The frequency of one component 
was swept stepwise through the frequency ränge indicated by the scale on the right side of each frame, whereas the frequency of the other component was kept 
constant (upper row, lower-frequency component varied, lower row, high-frequency component varied). Fixed parameters are printed at the top of each frame. The 
dot patterns indicate at which frequencies facilitated responses occurred. The same neurons as in Figure 2 are represented. 

vocalizations were monitored with a l4-inch ultrasonic microphone (Bmel 
and Kjaer type 4135), amplified, and fed to a frequency-to-voltage 
Converter with a resolution better than 50 H z . The individual resting 
frequencies were used to normalize all frequency relevant data to a resting 
frequency Standard of 76 k H z . 

The recording site locations were transformed into coordinates o f a 
brain atlas of either R.rouxi or P.p.parnellii (Radtke-Schuller, 
unpublished). T o ascertain accurately the topographical Organization o f 
Stimulus parameters, the recording sites were projected onto the surface 
of the cortex using a standardized projection procedure. This procedure 
is especially important for the evaluation of topographies in Pteronotus 
cortex since it has a sulcal structure separating temporal and frontal 
cortex, and the areas within the sulcus must be reconstructed so as to 
avoid distortion of the spatial relationships. The method for projection 
on the cortical surface is demonstrated in Figure 1. The curvature of 
layer IV (stippled line, IV) of the cortex in frontal atlas sections was 

approximated regionally, either by the best arc ( . . . IV) or a straight 
line, with the stipulation that the transition between two elements of 
approximation were steady. Unit locations were projected by dropping 
a perpendicular to the line or arc approximating the orientation of 
layer I V . 

For a unified representation the approximated curve was flattened, 
with the same origin of 1000 fim lateral to the midline for all sections. 
The position of a recorded unit was thus represented in a plane with 
the rostrocaudal coordinate as abscissa and the mediolateral projection 
coordinate as ordinate. A l l positional data in the cortex, i .e. recording 
positions, cyto- and myeloarchitectonic boundaries and tracer results 
(injection sites, projections), were processcd using the same 
reconstruction procedure and are therefore mutually comparable. 

Unit positions were entered together with their neurophysiological 
properties in a commercially available database management program 

(Reflex, Borland) and were sorted and graphed using various criteria. 
Since data from all experiments were entered into the database, the results 

could be analysed either individually or pooled over selected cases. 

Results 

A total of 446 neurons were recorded in the dorsomedial regions of the 

auditory cortex in five bats. The activity in 384 recordings could be 

characterized as single-unit, whereas in 62 cases the isolation was not 

as reliable (multiunit recording). The majority of penetrations were 

oriented obliquely, i.e. roughly parallel to the surface of the auditory 
cortex. The plane of penetrations was always coincident with the Standard 

frontal section plane of the brain atlas (Radtke-Schuller, unpublished; 

Schuller et al, 1986). 

Fifty units (12%) showed spontaneous activity, 139 (31 %) responded 

to single tones, 247 (55%) exhibited facilitation when stimulated with 

distinct combinations of Stimulus pairs, and 10 (2%) responded 

specifically to distinct Stimuli (e.g. only to noise or vocalization). This 

paper primarily describes the physiological properties of neurons that 

showed facilitation to combinations of two constant frequency ( C F / C F ) 

or frequency-modulated ( F M - F M ) Stimuli. The presentation of single 

C F or F M components alone was either completely ineffective or 

somewhat less effective in eliciting a response than the combination 

Stimulus, and the sum of the activity to either component was less than 

the activity to concurrent presentation of the Stimuli. 

Figure 2 gives examples of the responses in three different neurons. 

The activity is represented either in H dot raster displays (where each 
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dot represents a spike) for several sequences of Stimulus presentations, 

arranged in temporal sequence from bottom to top (upper part of frame), 
or as a peristimulus time histogram (lower part of frame). The vertical 
line labelled T R G represents the System trigger, and the Stimuli Start 

10 ms after this trigger. The vertical Stack of dashes indicates the end 
of the Stimuli. 

The left column o f frames shows the responses to C F Stimuli: 

presentation o f single C F Stimuli at 37.4 or 72.5 k H z alone yielded only 
little response (upper and lower frame). Coincident Stimulation with both 
C F tones (middle frame) elicited a clear and consistent phasic—tonic 
response, i.e. distinct facilitation o f the response to C F / C F combination 
tones. 

The example in the middle column demonstrates the response 
properties of a neuron to F M Stimuli. The F M components consisted 
of 10-kHz downward frequency sweeps with 3-ms durations. One F M 
sweep started at 35.0 k H z and elicited a spike sporadically (upper frame), 
whereas the other F M sweep, starting from 75.7 k H z , elicited no 
correlated response at all Gower frame). If the two Stimuli were presented 
together with a temporal delay of 3 ms, they provoked a vigorous 
response with almost a spike for each presentation. The number o f Spikes 
elicited by the combination was by far higher than the sum of activities 
to the Stimuli alone. 

In addition to these two types of neurons that were facilitated by either 
C F / C F or F M - F M combinations, neurons were found that manifested 
facilitation to both combinations side-by-side. The last column of frames 
in Figure 2 shows the responses to Stimuli termed ' C F M ' , consisting 
of a C F followed by an F M (as in the natural echolocation cry). Neither 
C F M Stimulus presented alone (upper and lower frames) elicited much 
response, but the presentation of the two C F M Stimuli with a temporal 

delay of 3 ms generated a pronounced response to both the C F and the 
F M portion (middle frame). 

Neurons facilitated by F M - F M combinations were more frequently 
found (197 out o f 247, 87%) than C F / C F facilitated neurons (n = 23, 
9%) or neurons with the mixed type o f facilitation ( C F M — C F M , n — 
27, 11%). 

The examples in Figure 2 show neurons with consistent responses over 
the sequence of Stimulus presentations. The excitability in quite a few 
other cases was less consistent: the unit discharged regularly for periods 
of time interspersed by periods of little or no response. 

A l l classes o f facilitation neurons ( C F / C F , F M — F M and 
C F M — C F M ) depended strongly on the spectral content of the 
components and, especially in F M - F M neurons, on the temporal 
relationship of the components. If the frequency of one component was 
kept constant and the frequency of the other, concurrently presented 
component was swept stepwise through the relevant frequency ränge , 
the pattern of discharges mirrored the tuning properties of that frequency 
component in the particular Stimulus constellation. Figure 3 shows the 
tuning properties for the C F / C F . F M - F M and C F M - C F M neurons 
in Figure 2 (from left to right). In the Upper row the high-frequency 
component was fixed and the low-frequency component was incremented 
in 64 equidistant Steps from 25, 25 and 20 k H z to 55, 45 and 60 k H z , 

respectively. The C F / C F neuron (top left column) was clearly facilitated 
when the frequency of the lower C F component was between 34 and 
46 k H z . The F M — F M neuron (middle) showed much sharper frequency 
tuning between 34 and 38 k H z (initial frequency of the F M sweep) for 
the lower F M component. Interestingly, the neuron that exhibited 
facilitation to both C F and F M pairs (right) responded over different 
frequency ranges for the two components, i.e. 28 — 34 k H z for the C F 
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and 3 0 - 4 2 k H z for the F M . Similar results were obtained when the 
frequency of the lower component was fixed while that of the upper 
component was varied (lower row). The tuning ranges were generally 
much narrower for both the C F / C F and F M — F M neurons: 
7 2 - 7 2 . 6 k H z and 7 1 . 5 - 7 6 k H z , respectively. In the C F M - C F M 
neuron the tuning ränge was broad for the Upper conponent, ranging 
from about 60 to 72 k H z . For the high-frequency component there was 
no discernible difference between C F and F M tuning ranges, like that 
seen for the low-frequency component. 

The details of frequency tuning for facilitation depend on the choice 
o f frequency of the Upper (high-frequency) component. In order to 
determine the best frequencies for the two components yielding the 
optimal facilitated response, the best facilitation frequency (BFF) of the 
high-frequency component was determined first because of its much 
narrower tuning. Then, keeping the high-frequency component constant 
(at B F F ) , the low-frequency component was stepped through the relevant 
frequency ränge to determine its B F F . In neurons with F M - F M 
facilitation, the temporal delay that gave best responses (see below) was 
held constant as wel l . 

The relationship between the two B F F ' s was in most cases not harmonic, 
i.e. the lower B F F was not equal to half the upper B F F . Figure 
4 represents deviation from the harmonic interval as a function of the 

frequency of the upper B F F for C F / C F (left) and F M - F M (right) 
neurons. A l l frequencies have been normalized to a Standard resting 
frequency of 76 k H z in order to allow comparison of the data across 
bats. This was done by subtracting the individual bat's resting frequency 
from all frequency values in recordings from this bat, and subsequently 
adding 76 k H z to standardize the resting frequency. The ordinate gives 
the difference between upper B F F (CF2 or F M 2 ) and twice the low B F F 
(CF1 or F M 1 ) . Positive values above the dotted horizontal line indicate 
that the lower B F F was below the harmonic interval, and vice versa. 
The oblique dotted line gives the locus of 76 k H z B F F s in the upper 
graphs, and of 38 k H z B F F s in the lower graphs. 

One can discern several interesting features o f C F / C F neurons from 
the graphs in the first column. There was a clear preponderance of 
neurons with lower B F F s slightly above 38 k H z , and up to 12 kHz above 
the harmonic interval for the Upper B F F . In the lower graphs it is also 
apparent that only a minor fraction o f C F / C F neurons had high B F F s 
at, or slightly above, the normalized resting frequency of 76 k H z . The 
harmonic deviation of 74 % of the neurons is negative, meaning that 
the lower B F F was higher than the harmonic interval determined by 
the upper B F F . Alternatively, the Upper B F F was less than the ideal 
harmonic interval specified by the lower B F F . 

For F M — F M neurons the Situation was somewhat different, in that 



Facilitation of bat cortical neurons 1171 

e
s
 

150-
0-
(0 

u. 100-
0 

L 
03 

_ü 50-
E 
3 
C 

0-0-

0 2 4 6 8 10 

de 1oy (ms ) 

i i i i i i i i—r 
0 2 4 6 8 10 12 14 16 

de 1 QLJ ( ms ) 
FIG. 6. Delay tuning curves for F M - F M - and CF/CF-facilitated neurons. The 
examples in the upper graph show the most commonly found delay tuning 
properties in F M - F M neurons, whereas those in the lower graph exemplify only 
a minority of delay-dependent CF/CF neurons. most of which were much less 
sharply tuned than those shown. 

the B F F of the higher component clustered at, or slightly above, the 
resting frequency. This is indicated by the accumulation of neurons along 
the oblique dotted line in the Upper right graph, and at and above the 
76 k H z abscissa value in the lower graph. For the lower B F F , a Cluster 
of neurons at ~ 39 k H z can be discerned. A l s o , in F M —FM-facilitated 
neurons there was a tendency for the deviation from harmonic relation 
to be preponderantly negative, i.e. the lower B F F was most often higher, 
or the upper B F F lower, than a harmonic relation would dictate. 

The optimal Stimulus intensities for the two components were not 
systematically investigated, but the typical best sound pressure levels 
for the low-frequency component were between 40 and 80 dB S P L , and 
for the high-frequency component between 10 and 50 dB S P L . Facilitated 
responses were best i f the difference between the two components was 
between 10 and 30 d B . 

The latencies o f the responses to single Stimuli as well as to 
combinations varied widely (4 — 30 ms), most falling between 10 and 
15 ms. The minimal latencies ranged between 4 and 7 ms. 
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FIG. 7. (Top) Mean best frequencies for high and low frequency components 
of F M - F M neurons versus their best delays. (Bottom) Difference between upper 
and twice the lower BFFs versus best delay. The bars represent Standard deviations 
where applicable. Note the increasing deviations from a strict harmonic relationship 
for best delays of <5 ms depicted in the lower graph. 

D e p e n d e n c e o n t i m e d e l a y 

In all neurons facilitated by F M - F M combinations, the facilitation was 
clearly a funetion of the temporal delay between the low- and the high-
frequency component. The responses to a sequence o f stepwise increases 
of the temporal delay are shown for a C F M - C F M neuron in the left 
graph of Figure 5. Only a few spikes were elicited in response to the 
final F M — F M combination at delays of 1 and 2 ms (bottom). When 
the two F M portions were separated by 3—5 ms, the cell fired 
consistently and vigorously. Beyond that, only a few spikes were elicited 
when the delay increased to 6 ms (top). Even longer delays (not shown) 
gave no response at a l l . The delay tuning of another F M — F M neuron 
is given in the upper right graph of Figure 5, where the delay was swept 
over 35 ms starting from 30 ms (bottom) and ending at - 5 ms (top). 
The neuron discharged consistently at delays between 1 and 4 ms to the 
later of the two F M components. 

The best delays, i.e. the temporal delays yielding the optimal 
facilitation, of 217 units were distributed over a ränge from 0.5 to 9.5 ms 
with a clear overrepresentation o f the 2—4-ms delay ränge . L o n g best 
delays above 6 ms were very rarely encountered, comprising only 5% 
of the sample o f facilitated neurons. This scarcity o f long best delays 
is not merely a sampling error, as w i l l be seen later on in this paper. 

Not only were F M — F M neurons sensitive to temporal delays, but 
also the CF/CF-response of C F / C F or mixed d-type neurons showed 
delay sensitivity. This can be seen in the left dot display in Figure 5, 
which shows increased response by a mixed d-type cell to the C F 
components at 2 ms delay, compared to the responses at 1 ms or > 3 ms 
delays. 
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Examples of discharge magnitude-versus-delay functions are given 
in Figure 6 for F M - F M neurons (upper graph) and for C F / C F neurons 
(lower graph). The temporal bandwidth is roughly the same for F M - F M 
neurons with best delays of 2 - 4 ms, amounting to between 2 and 3 ms 
at 50% maximal activity. Delay tuning in C F / C F neurons could be either 

absent, show a preference for short delays ('low-pass 1 , dotted curve), 
or be selective for a distinct ränge of delays ('bandpass', solid line). 

Delay tuning of facilitated neurons was also affected by the frequencies 
(or bandwidths) of the two Stimuli. Different combinations induced shifts 
in the best delay of up to 1 ms, so that the best delay is only characteristic 
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bottom to top. 

for a neuron at particular frequencies of the facilitating components. 
The relationship between the best delays and the mean B F F s for 
F M — F M neurons is represented in Figure 7. The lower B F F was usually 
slightly higher than half the resting frequency, whereas the Upper B F F 
had, on the average, a minimum at best delays of 2 ms. A t shorter and 
longer delays, the mean Upper B F F s approached and exceeded the 
normalized resting frequency at 76 k H z . The lower graph in the Figure 
presents deviations from the harmonic interval between the components. 
It is striking that, on average, it was negative for the most common best 
delays for facilitation, although the Standard deviations were large. In 
other words, either the low-frequency component is generally higher, 
or the high-frequency component lower, than a harmonic interval. 

I n f l u e n c e o f a n i n i t i a l F M s w e e p o n f a c i l i t a t i o n 

Some rarely encountered neurons were recorded which had interesting 
properties. Figure 8 summarizes the influence of an initial upward 
frequency sweep (left frames) and of the direction (downward or upward) 
of the final F M sweep on the facilitated response of one such cel l . The 
upper dot display on the left shows the facilitation o f the neuron when 
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FIG. 10. Facilitated responses to FM/SFM combinations. The graph shows the 
responses to the sinusoidally frequency-modulated component (SFM, top) or to 
the lower CFM component alone (bottom). The strong facilitated response to 
the combined presentation (middle) shows the independence of facilitation from 
the waveform of the frequency sweep. 

stimulated with a pair of C F M Stimuli. Both C F / C F and F M — F M 
facilitation can be seen in the Stimulus constellation given at top of the 
frame. The activity elicited when the Single components were presented 
alone was minimal. When under otherwise identical conditions an initial 
upward frequency sweep o f 10 k H z (middle) or 5 k H z (lower frame) 
was added to the high-frequency component, the facilitation vanished, 
leaving only weak and inconsistent activity after the Stimuli. The 
facilitiation by the C F / C F pairing seems to be more completely abolished 
than that caused by the F M - F M . The influence of initial frequency 
sweeps was demonstrated in only three neurons, but was not routinely 
examined during these experiments. Therefore no general Statement about 
this interesting effect can be made at this time. 

I n f l u e n c e o f F M s w e e p d i r e c t i o n o n f a c i l i t a t i o n 

O n the right side of Figure 8 the influence on facilitation of sweep 
direction of the terminal F M in the lower component is shown. The 
upper frame shows the facilitated F M — F M response in the common 
Situation in which both frequency sweeps drive downwards. The response 
was pronounced and well above the response to single components. When 
the low frequency component was swept upward (reversed) over the 
same frequency band, the facilitated response was reduced, but showed 
the same discharge pattern (lower frame). Changes in the number o f 
spikes but not in discharge pattern were found in the facilitated response 
o f F M - F M neurons upon reversal o f the sweep in the low-frequency 
component. 

I n f l u e n c e o f d u r a t i o n 

Four C F / C F neurons showed an interesting phenomenon in that they 
responded to combinations of the C F components when the lower 
frequency component was considerably reduced in duration. A s little 
as 1—2 ms duration o f this component was sufficient to induce the füll 
facilitated response. 

E f f e c t s o f v o c a l i z a t i o n o n f a c i l i t a t i o n 

Spontaneous vocalization of the bat typically had marked influences on 
the response o f facilitated neurons. In almost all facilitated neurons, 
vocalizations emitted during recording led to a shutdown of the response. 
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Figure 9 shows an example o f a neuron which displayed consistent 
facilitation to F M - F M combination Stimuli. When spontaneous 
vocalization occurred (indicated in the lower frame by horizontal bars) 
the neuron became completely silent for the next few Stimulus 
presentations (i.e. those above the bar). In the few neurons recorded 
concurrently with vocalizations (n = 5) this blanking effect was always 
found. 

Another interesting response was found in two neurons which were 
stimulated with either a C F M Stimulus (consisting o f a C F at 35.6 k H z 
and a terminal 5 -kHz down ward sweep), a sinusoidally frequency -
modulated Stimulus (modulation depth 5 k H z , modulation frequency 
100 Hz) with a carrier frequency of 65 k H z , or a combination of both 
Stimuli. Figure 10 shows that neither of the Stimuli alone elicited 
consistent activity (upper and lower region of the raster display), whereas 
the combination produced vigorous discharge of the neuron (middle) 
after the end of the Stimuli. The response is similar to that evoked by 
conventional F M - F M combinations. Evidently, the final transient of 

the sinusoidal frequency modulation mimics the facilitation caused by 
the high-frequency F M component. 

T o p o g r a p h i c a l O r g a n i z a t i o n o f f a c i l i t a t e d n e u r o n s 

Neurons with facilitated responses to C F or F M combination Stimuli 
were only found in the dorsal areas of the auditory cortex in the horseshoe 
bat. Figure 11 shows the forebrain o f the bat both from the side and 
from above, showing the part of the cortex which was flattened following 
the procedure described in the methods to represent the physiological 
data in a normalized form. The corresponding boundaries make up the 
frames for the graphs accompanying the overview. which represents the 
distribution of all facilitated and non-facilitated neurons recorded in this 
investigation. The neurons exhibiting facilitated responses are 
concentrated in a 500—1500-/xm-wide dorsal belt and cover a 
rostrocaudal distance up to 1650 /xm. This cortical area is not exclusively 
occupied by facilitated neurons, as neurons showing no specialization 
to combination Stimuli are found there in considerable numbers (lower 
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FIG. 11. Topographical distribution of neurons on the cortical surface. The locations of recordings are projected on the cortical surface following the method described 
in Figure 1 and are represented for the rostrocaudal positions from slice 101 to slice 209 and for a lateral span of 4000 ^m, starting at the lateral reference coordinate 
at 1000 ( i m . The position of this cortical area is indicated in the upper left graph, which shows the skull profile and brain from the top (upper drawing) and side 
(lower drawing). Due to the cortical curvature the lateral isodistance lines (connecting points equidistant from the midline) are not straight in these views. The lower 
left panel shows the locations where neurons could be found that were not facilitated by the combination Stimuli (non-facilitated neurons). The locations of facilitated 
neurons are shown in the upper right panel. The cartoon-like graph at the lower right outlines the areas where specific types of facilitated responses primarily occur. 
In the rostral part of the dorsal field clear-cut segregation of the different facilitation types could not be found. 
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FIG. 12. Rostrocaudal position of F M - F M facilitated neurons with distinct best 
delays. The mean best delays are represented with their Standard deviations. The 
most important aspect of this curve is the spatial overrepresentation of best delays 
around 3 ms. 

graph). Wi th in the cortical field, the Stimulus combination producing 
facilitation is regionally distinct (Figure 11, lower right). The caudal 
two-thirds of the field (slices 1 3 7 - 1 8 1 ; slices are 22 /im apart) contained 
neurons facilitated excusively by F M — F M combinations. F M — F M 
neurons were also found in the dorsalmost part o f the rostral third of 
the field. C F / C F facilitation occurred rostrally (slices 113-133) , where 
the facilitated cells are mainly located laterally ( 7 5 0 - 1 7 5 0 / im 
mediolateral position). C F M - C F M neurons, facilitated by both Stimulus 
combinations, are concentrated at the same rostrocaudal levels, but 
slightly more dorsal than C F / C F neurons. 

The best delay o f F M — F M neurons varied systematically in the 
rostrocaudal direction. The means and Standard deviations of best delays 
as a function of the rostrocaudal position within the dorsal field are shown 
in Figure 12. Best delay increases steadily from < 1 ms rostrally (slice 
105) to 3 ms (slice 129). It then remains constant for —600 / im (slices 
1 2 9 -1 5 7 ) , a region comprising 40% of the rostrocaudal extent o f the 
field, before increasing again caudal to slice 157. Therefore, the 
topographical arrangement for neurons with distinct best delays is not 
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FIG. 13. Location of facilitated neurons within cortical layers. The mean depth below cortical surface of recordings (filled circles) with Standard deviations (bars) 
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of facilitated neurons show differences in location within cortical layers. 
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linear with distance in the plane of the cortex: neurons with best delays 
— 3 ms are not only overrepresented numerically, but they also occupy 

a much larger cortical area than neurons with shorter or longer best 
delays. Caudal to slice 157 the recording probability for facilitated 
neurons sharply decreased, and few neurons with best delays > 6 ms 
were found. 

D e p t h o f r e c o r d i n g s 

Recordings of neurons were in general restricted to distinct depths below 
the cortical surface. Facilitated responses were only found between 
400 and 800 f i m , with a clear concentration —700 / im . N o facilitated 
responses could be located outside this ränge and certainly did not occur 
throughout an entire cortical column (Figure 13, Upper left). The 
boundaries of the layers (stippled lines) are given as mean depth values 
o f the cytoarchitectonic borders over a 1000 — 3000-/*m lateral extent 
o f the unrolled cortex. The bulk o f facilitated neurons was concentrated 
in layer V , and encroached on the bottom of layer I V in more caudal 
recording sites. C F / C F and mixed type neurons (Figure 13, right) were 

more commonly found 100 f i m deeper in layer V than F M — F M neurons 
(Figure 13, lower left). 

The sequence of neurons responding to either component alone 
( F M 1 or F M 2 ) and to the combination of the two components was 
stereotyped in many penetrations. When lowering the electrode in a dorsal 
approach, neurons activated by the F M 1 component alone were 
encountered first, followed by facilitated cells responding to the 
combination Stimulus, and still more ventrally neurons driven by the 
F M 2 component prevailed. It thus appears that there is a layer-specific 
arrangement of response types in this part of cortex. 

M o u s t a c h e d b a t 

The stereotaxic recordings in the dorsal field of the moustached bats 
were primarily conducted to define the boundaries of the fields with 
facilitated responses, with exactly the same procedures used in the 
horseshoe bat. This enabled comparison of the fields between the two 
species physiologically and anatomically based on the brain atlases 
available for both (S. Radtke-Schuller, unpublished). 
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Ftc 14. Representative examples of neurons showing facilitated responses to combinations of two frequency-modulated (FM) Stimulus components in Pteronotus 
p.parnetli. The responses to either Stimulus component alone are represented in the upper row (low-frequency component, FM1) and lower row (high-frequency 
component, FM2,FM3 FM4, respectively). The activity elicited by a FM1-FM2 combination (left column), FM 1 - F M 3 combination (middle column) or a 
FM1-FM4 combination (right column) is shown in the frames of the middle row. Stimulus type, frequency, amplitude and delay are indicated at the top of each frame. 
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The spike activity of a total of 195 neurons was monitored in the dorsal 

areas of the auditory cortex in five bats. Sixty-six per cent (117) of the 

neurons were facili-tated by F M - F M combinations, while 6% (12) were 

facilitated by C F / C F . Wi th in the class of F M - F M facilitated neurons, 

36 were sensitive to a combination o f the first harmonic ( F M 1 ) and the 

second harmonic ( F M 2 ) (Figure 14, left column), 51 responded to 

F M 1 and the third harmonic (FM3) (Fig . 14, middle column) and 30 to 

a combination o f F M 1 and the fourth harmonic ( F M 4 ) (F ig . 14, right 

column). Especially in F M 1 / F M 4 neurons, the responses showed 

variations in strength on successive Stimulation sweeps. Periods o f 

vigorous responses were followed by near-silent periods, and the 

modulation of activity appeared to be cycl ic . 

The few C F / C F neurons recorded (12) all responded to a combination 

of the first and third harmonics. In Figure 15 (left column) an example 

is represented in which the neuron was not activated by the lower 

harmonic (CF1) component (top), not totally silent to the Upper harmonic 

(CF3) component (bottom), but showed clearly facilitated responses when 

both components were presented together (middle). 

Mixed type neurons showing facilitation to both C F / C F and F M - F M 

combinations were also found, the type of facilitation dependent on the 

frequency of the upper harmonic. Figure 15 (right column) shows such 

a mixed type neuron. It exhibited clear C F / C F facilitation for frequencies 

of the Upper harmonic between 86 and 89 k H z and showed F M - F M 

facilitation between 87 and 98 k H z . Fewer mixed type neurons were 
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FIG. 15. Responses of facilitated neurons in Pteronotus p.parnellii to C F 1 / C F 3 (left 
column) and C F M 1 / C F M 3 combination Stimuli (mixed-type response, right 
column). The Upper and lower frames show the activity elicited by the Stimulus 
components alone, and the middle frames give the discharge pattern to the Stimulus 
combinations. In the mixed-type neuron (right column, middle) the frequency 
of the C F M 3 component has 
been raised stepwise from 80 to 100 kHz. Stimulus type, frequency, amplitude 
and delay are indicated at the top of each frame. 

found in Pteronotus (3) than in Rhinolophus, which might partly be due 

to the smaller sample o f neurons in this species. 

The tuning properties of the facilitated responses for the different 

components in F M - F M neurons is represented in Figure 16. The starting 

frequency of F M Stimuli is indicated in each case. The spike trains shown 

in the dot rasters are elicited by Stimuli with stepwise increasing 

frequencies of one component (ordinate), while the frequency of the other 

component was kept constant. The Upper row shows the responses when 

the fundamental frequency ( f (FMl ) ) was varied while keeping the higher 

harmonics ( F M 2 (left), F M 3 (middle), F M 4 (right)) constant at the 

respective best frequency for facilitation. In the lower row the 

F M 1 component is fixed at best frequency and the frequency of the upper 

components ( F M 2 , F M 3 , F M 4 ) is swept through the relevant r ä n g e . 

The most striking tuning property is that the facilitating frequency 

bands almost always lie below the respective harmonics of the normalized 

echolocation calls o f the individual bats (30.5, 61, 91.5 and 122 k H z ) . 

This is again visible in Figure 17, which compiles data on the relationship 

o f best facilitating frequencies in F M - F M neurons. Most B F F s are 

below the respective harmonics (abscissa) of the echolocation calls. The 

ordinate gives a measure of the harmonic deviation. When the two 

facilitating components are harmonically related, data points would lie 

on the horizontal line. The majority o f neurons show negative values, 

meaning that the Upper component has a lower best frequency than a 

harmonic relationship would require. 

Other general response properties corresponded to those described in 

detail by O ' N e i l l and Suga (1979, 1982), Suga and O ' N e i l l (1979) and 

Suga et al. (1983a). There were some differences in the response 

properties in the two species, in that the neurons in the moustached bat 

generally responded more briskly and consistently than those in the 

horseshoe bat, even though the recording procedures and the electrodes 

used were identical. The same was true for the facilitated response, in 

that the facilitation was generally more pronounced in the moustached 

bat, i.e. more units exclusively responding to combinations were found 

than in the horseshoe bat. 

The dependence o f facilitation on the time delay between the two F M 

components is represented for two neurons in Figure 18A. A t delays 

shorter or 1 arger than the best delay (2 ms in both examples) the spike 

rate typically decreased rapidly (within a few milliseconds) to baseline 

level. The results of rate -de lay functions in this study conform to 

previously published material on the moustached bat. 

In our recordings, only very few neurons were found that responded 

to F M - F M combinations with long delays (maximal best delay was 

7 ms). The vast majority of neurons had best delays between 2 and 4 ms. 

Figure 18B gives the best delay distributions for the three different 

F M 1 - F M / i combinations. Only F M 1 - F M 4 neurons showed higher best 

delays forming a second peak in the distribution at 5 - 6 ms. 

The numerical overrepresentation of the best delays - 3 ms corresponds 

well to that found in the horseshoe bat. The cortical areas with facilitated 

neurons were systematically scanned beyond their borders, indicated by 

the lack of facilitation by combination Stimuli and/or the presence o f 

pure tone-driven neurons. Therefore, this prevalence o f best delays 

— 3 ms cannot be interpreted as a mere consequence of repeated sampling 

in the same areas; it represents an enlarged cortical volume specific to 

this r ä n g e o f best delays. 

Despite the use of an accurate stereotaxic approach we could not 

reproduce clearly the gradients of best delays along the rostrocaudal axis 

with penetrations in frontal planes. This was also the case in early 

experiments exploring functional Organization in the moustached bat 

cortex in a different laboratory. It seems that the demonstration o f this 
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FIG. 16. Frequency dependence of facilitation for FM1-FM2 (left).-FMl — FM3 (centre) and FM1/FM4 neurons (right) in Pteronotus p . p a r n e l l i i . The frequency 
of one component was swept stepwise through the frequency ränge indicated by the scale on the right side of each frame, whereas the frequency of the other componenl 
was kept constant (upper row, lower-frequency component varied, lower row, high-frequency component varied). Fixed parameters are printecl at the top of each 
frame. The dot patterns indicate at which frequencies facilitated responses occurred. The same neurons as in Figure 14 are represented. 

topographical arrangement necessitates a rostrocaudal path of penetration 
following this gradient. 

Discussion 

P a t t e r n o f e c h o l o c a t i o n c a l l s 

The two bat species, R . r o u x i and P . p a r n e l l i i , use very similar 
echolocation calls, consisting of long-duration (tens o f milliseconds) 
constant frequency components terminated by short (— 3 ms), downward 
frequency sweeps. The initial upward frequency sweep is not ubiquitous 
in the horseshoe bat signal, varying greatly in intensity and sweep ränge 
(Neuweiler et a l . , 1987). The most important difference between the 
two echolocation Signals is in their harmonic composition. In the 
moustached bat, the call contains up to five harmonics (fundamental 
frequency - 3 0 k H z ) , whereas in the horseshoe bat the call contains 
only two (fundamental - 3 8 k H z ) . 

Facilitated responses in the horseshoe bat are in accordance with the 
simple structure of its signal, in that only combinations o f the fundamental 
and the second harmonic produce such responses. No other combinations, 
e.g. two second-harmonic components, have facilitating effects in cortical 
neurons within the area where we recorded (Fig. 11). In this way the 
response properties of the horseshoe bat's dorsal cortical field agree fully 
with those in the moustached bat's dorsal cortical field. 

These two bat species are members of unrelated taxonomic families, 
and therefore might have evolved the specificity for different harmonic 
combinations independently. On the other hand, facilitated responses 
to F M — F M combinations are not unique to C F / F M bats. In the F M 
bat M y o t i s l u c i f i i g u s , the facilitating combination is not composed of 
harmonically related, lower and Upper frequency components. Rather, 

two F M 1 components, mimicking pulse and temporally shifted echo, 
facilitate the response in cortical neurons (Sullivan, 1982a,b; Berkowitz 
and Suga, 1989). The facilitation is maximal i f the earlier pulse 
component is o f greater amplitude and higher in frequency by several 
k H z than the delayed echo. 

Even though the frequencies o f the two components are only a few 
k H z apart in the latter case, versus widely spaced in the two C F / F M 
bats, there might be a common neuronal mechanism, distinguished only 
quantitatively. Thus the combination sensitivity of these cortical neurons 
might be a rather general feature, with the precise frequency ranges 
selected for conjoint processing adapted to unknown behavioural 
demands. 

S e l f - s t i m u l a t i o n b y v o c a l i z a t i o n 

Pietsch and Schuller (1987) have shown with cochlear microphonic 
recordings in vocalizing horseshoe bats that self-stimulation by the emitted 
pulse corresponds to an acoustic Stimulus o f - 7 8 - 8 3 d B S P L at the 
frequency of the second harmonic. Assuming that the acoustic 
transmission for the first and second harmonic is comparable, the ear 
wi l l be stimulated by the emitted vocalization at the lower harmonic 
frequency at 4 0 - 7 0 dB S P L (i.e. 1 0 - 4 0 dB less than the second 
harmonic). This coincides well with the optimal intensity ränge of the 
lower frequency component in combination-sensitive neurons. 

It is unclear what influence the relatively strong acoustic Stimulation 
by the second harmonic in the emitted pulse has on the facilitated neurons. 
In the moustached bat, adding this frequency to the initial pulse often 
reduced the facilitation, thereby contracting and sharpening the 
de lay - tun ing curve boundaries ( O ' N e i l l and Suga, 1982). 

Despite being the probable source o f the lower frequency component 
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FIG. 18. Delay dependence of facilitated responses. The delay tuning is represented 
in the two graphs on the left, in which the temporal delay of the high-frequency 
component is changed stepwise between 1 and 6 ms (top) or 0 and 4 ms (bottom). 
The curves on the right give the distribution of best delays of F M - F M neurons 
for the three combinations F M 1 - F M 2 , F M 1 - F M 3 and F M 1 - F M 4 . The 
distributions indicate an overrepresentation of facilitated neurons with best delays 
between 2 and 4 ms. 

for facilitation, the vocalization can also have an adverse effect on 
facilitated neurons. O n several occasions when vocalization occurred 
spontaneously during recording, the response of F M - F M neurons was 
shut down for several Stimulus presentations (Fig . 9). However, in these 
cases, vocal self-stimulation was temporally uncorrelated with the 
Stimulus 'echoes'. What effect vocalization would have when the bat's 
own vocalization is immediately followed by a corresponding echo is 
at present unknown for horseshoe bats. In moustached bats, Kawasaki 
et al . (1988) reported no difference in delay tuning or facilitation 
magnitude when F M - F M neurons were stimulated with pairs of artificial 
pulses and echoes versus artificial echoes time-locked to the bat's own 
vocalizations. That ongoing vocalization alters processing of other types 
of acoustic Signals in a time-dependent fashion has been shown in 
horseshoe bats (Schuller, 1979; Metzner, 1989). The shut-down of 
combination-sensitive cells by temporally uncorrelated vocalizations 
supports the evidence for a temporal analysis window for echoes tied 
to vocalization (Schuller, 1977; Roverud and Grinnell , 1985). It suggests 
that the processing of echoes falling outside the window might be actively 
suppressed by the bat's vocalization, thus helping the bat avoid jamming 
by echolocating conspecifics. 

Vocalizations in horseshoe bats can contain an initial upward frequency 
sweep at significant intensity levels. Strong initial frequency sweeps can 
have dramatic suppressive effects on the response properties of F M - F M 
neurons (F ig . 8). This affords the bat the possibility of Controlling the 
activation o f range-encoding cortical neurons by modulating the initial 
upward frequency sweep of the echolocation cal l . 

D o p p l e r - s h i f t c o m p e n s a t i o n a n d f a c i l i t a t e d n e u r o n s 

When a bat is hunting, the frequency of its emitted echolocation calls 
wi l l be shifted upwards due to the Doppler shifts induced by its relative 
speed towards the target. The echo frequencies, consisting mainly of 
the second harmonic in the horseshoe bat and the second to fourth 
harmonics in the moustached bat, are thus higher than a harmonic interval 

above the emitted fundamental. I f the bat compensates for the induced 
Doppler shifts all frequencies are shifted in the same direction (lowered), 
but the non harmonic relationship wil l not be altered. The frequency tuning 
properties öf facilitated neurons, however, show that best frequencies 
for facilitation in both species (Figs 4 and 17) show just the opposite 
trend. In the majority o f neurons the upper harmonics are lower than 
a harmonic interval above the fundamental. Therefore it appears that 
the neurons are not optimally tuned to process composite signals as they 
occur during echolocation. 

Ye t , processing can occur within the frequency tuning ränge o f the 
lower and Upper component for facilitated response. The tuning o f the 
upper component in most F M - F M neurons is close to the resting 
frequency, and is relatively sharp (bandwidth of only a few kHz) , whereas 
the frequency tuning of the lower component is broad ( 5 - 1 5 k H z 
bandwidth). This means that normally the echo frequencies ( F M 
component), whether shifted or not, w i l l fall in the response area. 
Simi lar ly , the lower harmonic of the echolocation ca l l , either at rest or 
lowered during Doppler shift compensation, w i l l fall within the tuning 
area for the lower facilitation component. 

The consequence is that in real echolocation most F M - F M neurons 
wi l l be facilitated suboptimally to some degree, but only a few w i l l be 
stimulated by their optimal combination. The 4frequency-tolerant' 
behaviour (i.e. wide bandwidth) of the System avoids the Situation where 
only a small proportion o f the total population would be active for any 
particular pulse—echo frequency combination. The advantage o f 
frequency-tolerant tuning properties for delay-sensitive neurons for delay 
evaluation has been discussed more fully elsewhere ( O ' N e i l l , 1985). 

B e s t f a c i l i t a t i o n f r e q u e n c i e s for C F / C F n e u r o n s 

Although our sample of C F / C F facilitated neurons is small (n = 23 pure 
C F / C F and n = 27 mixed C F M — C F M ) , it is astonishing that only eight 
neurons had upper B F F s at or slightly above the resting frequency of 
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the bat. Most B F F s were in the ränge of the F M sweep frequencies. 
This finding differs from that in the moustached bat, where C F / C F 
neurons showed B F F s predominantly at or slightly above the 
corresponding harmonic (Suga et al., 1983a,b). 

In mixed C F M - t y p e neurons that were facilitated by C F as wel l as 
F M combinations, the upper B F F generally feil within the F M 2 sweep. 
The most probable explanation for this would be that facilitation of these 
neurons is not dependent on the particular temporal order o f the 
facilitating frequencies presented. This view is supported by the fact 
that in many neurons the facilitation could also be produced with upward 
frequency sweeps or sinusoidal modulations, as long as the appropriate 
frequency ränge was involved. Often the order of frequency presentation 
had only a minimal effect on the level o f response activity. 

In the moustached bat, Suga et al. (1983b) showed that a bicoordinate 
map of upper and lower B F F s could be discerned in the area containing 
C F / C F cells. They postulated that C F / C F neurons encode the magnitude 
of the Doppler shift between the pulse and echo, and might function 
in the calculation needed for Doppler shift compensation. In the horseshoe 
bat, however, the tuning of C F / C F cells apparently does not correspond 
to the Stimulus Situation typical of Doppler compensation. C F / C F -
facilitated neurons in horseshoe bats clearly require more extensive 
investigation before their significance in behaviour can be understood. 

T e m p o r a l t u n i n g o f r e s p o n s e s 

Even more than frequency, the most important parameter for facilitation 
is the delay between the two components. Best delays are characteristic 
for facilitated neurons at the optimal frequencies and intensities o f the 
two components. The facilitation shows a form of tuning to the delay, 
and the half-value o f the response is typically reached at 1.5 ms for best 
delays between 2 and 4 ms (Fig . 6). If we take into account the fact 
that slight shifts o f the best delay occur with changes in Stimulus 
frequencies and/or intensities, individual cortical neurons can encode 
delay with only modest accuracy in the horseshoe bat. A typical neuron 
with a best delay of 3 ms, corresponding to a target distance of - 50 cm, 
would respond between 50 and 100% of maximum over distances 
between 26 and 76 cm. Ranges below 50 cm would not be 
distinguishable from those above on the basis o f a discharge rate code 
alone. This means that, by itself, the firing rate of facilitated neurons 
is insufficient to provide unambiguous ränge Information. F M — F M cells 
are not very precise ränge encoders. But the cortical System employs 
many such cells, and it must somehow provide a reasonable 
approximation of the accuracy that these bats achieve in behavioural 
experiments on ränge discrimination (Simmons, 1971, 1973). Reversible 
inactivation (with the G A B A agonist muscimol) in the F M — F M area 
in moustached bats selectively disrupts fine time delay discrimination 
of F M - F M Stimulus pairs (Riquimaroux et al., 1991), suggesting the 
importance of cortical processing to this perception. Parallel processing 
of ränge Information by many neurons might be a reasonable explanation 
for the behaviourally measured Performance. The power of cortical maps 
in providing vector sums of the actual value of a Stimulus parameter 
to yield extremely high acuity is discussed in Altes (1989). 

T o p o g r a p h i c a l a r r a n g e m e n t o f b e s t d e l a y s 

In the dorsal part of the horseshoe bat auditory cortex, we did not find 
multiple representations o f best delay gradients as reported in the 
moustached bat (Suga and Hor ikawa, 1986). Only one field showed a 
rostrocaudal gradient o f increasing best delay. Delays o f < 2 ms or 
> 5 ms were rarely found, in agreement with the findings in the 

moustached bat ( O ' N e i l l and Suga , 1982). The numerical 
overrepresentation o f best delays between 2 and 4 ms (F ig . 5) was 
reflected in the topographical distribution (Fig . 12). In contrast to the 
findings in the moustached bat (Suga and Hor ikawa, 1986), the 
rostrocaudal change in best delay is not linear. Rather, there is an 
enlargement of the cortical Space devoted to best delays - 3 ms 
( - 5 0 cm). Seventy per cent of the rostrocaudal distance occupied by 
F M - F M neurons is devoted to best delays < 4 ms, and 64% of this 
area represents best delays between 2 and 4 ms. In earlier reports 
( O ' N e i l l and Suga, 1982; Suga et al., 1983b) a numerical and spatial 
overrepresentation o f best delays between 3 and 8 ms (maximum at 
4 - 6 ms) is reported for the F M — F M area of the moustached bat. 

S u p p l e m e n t a r y f u n c t i o n a l I n t e r p r e t a t i o n for f a c i l i t a t e d n e u r o n s 

The overrepresentation of best delays - 3 ms suggests an alternative 
to the notion that the F M — F M region simply forms a map of target 
distance. Perhaps the activation o f neurons in this area acts to trigger 
the behaviours used to intercept a volant target. The fol lowing scenario 
illustrates this idea. When the bat is at some distance from the target, 
only a few F M - F M neurons would be activated. Subsequently, as the 
bat approaches the prey, the activation would progress from caudal to 
more rostral sites. Not only would the position of peak activity move 
in the dorsal field, but also the number o f neurons activated would 
increase very abruptly as the bat flew to within 76 cm of the target, 
reaching a maximum at —50 c m , corresponding to a delay of — 3 ms. 
The sharp increase and maximization of activity at these distances might 
trigger the motor responses needed to capture the prey. 

When considering this alternative hypothesis, it is important to keep 
in mind that any flight manoeuvre necessitates a minimal time to be 
initiated prior to the encounter, and that this time depends on the flight 
speed and the radius o f the turn (Norberg et al., 1987). Thus an insect 
can escape i f it manages to perform quicker turns than the bat, due to 
the vastly different inertial masses (a good example of this can be found 
in Trappe and Schnitzler, 1982). A bat Aying at speeds of 2 - 4 m/s 
can cover a distance o f 50 cm in a time span of 250— 125 ms. It is 
unlikely that it has much freedom to control its flight path within the 
last 100—200 ms o f target pursuit: the bat becomes essentially ballistic 
in the final approach. The same logic suggests that the final manoeuvres 
before capture must be made some 200 ms in advance. 

Since the bat often catches an insect using its wings and its interfemoral 
membrane (uropatagium), it w i l l have a good chance o f success i f the 
posture assumed at a distance between 76 and 50 cm from the target 
is simply maintained for the rest o f the capture sequence. The high level 
of activity arising in delay-tuned dorsal cortical neurons at these distances 
might therefore be the signal to make body position adjustments for prey 
capture, which then follows in a rather independent way. The same 
mechanism could be involved in obstacle crash avoidance or in landing 
manoeuvres, by triggering the appropriate turns at the right time. 

This 'alarm' hypothesis is not meant to exclude the common functional 
interpretation that these neurons precisely measure target distance and 
translate it to topographical coordinates in a cortical map. Rather, it tries 
to present an explanation for the strong overrepresentation of distinct 
temporal delays - 3 ms and the non-linearity of the delay mapping on 
the cortical axis. 
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Abbreviations 

BFF best facilitation frequency 

CF constant frequency 

CNn component n of CF Stimulus 

CFM CF fo l lowed by FM Stimulus 

FM frequency modulation 

FM/? component n of FM Stimulus 

GABA 7-aminobutyric acid 

SFM sinusoidally frequency-modulated 
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