386 research outputs found
Amplitude dynamics of charge density wave in LaTe: theoretical description of pump-probe experiments
We formulate a dynamical model to describe a photo-induced charge density
wave (CDW) quench transition and apply it to recent multi-probe experiments on
LaTe [A. Zong et al., Nat. Phys. 15, 27 (2019)]. Our approach relies on
coupled time-dependent Ginzburg-Landau equations tracking two order parameters
that represent the modulations of the electronic density and the ionic
positions. We aim at describing the amplitude of the order parameters under the
assumption that they are homogeneous in space. This description is supplemented
by a three-temperature model, which treats separately the electronic
temperature, temperature of the lattice phonons with stronger couplings to the
electronic subsystem, and temperature of all other phonons. The broad scope of
available data for LaTe and similar materials as well as the synergy
between different time-resolved spectroscopies allow us to extract model
parameters. The resulting calculations are in good agreement with ultra-fast
electron diffraction experiments, reproducing qualitative and quantitative
features of the CDW amplitude evolution during the initial few picoseconds
after photoexcitation.Comment: 21 pages, 14 figures; this version is almost identical to the
published version; comparing to the earlier arXiv submission, current version
contains a new figure (Fig.10), and a broader discussion of theoretical
results and approximation
Experimental and Numerical Investigation on Laminar Pipe Flow of Magneto-Rheological Fluids under Applied External Magnetic Field
An experimental and numerical study of Magnetorheological (MR) fluids flow in circular pipes under the influence of uniform magnetic field is considered. In the experiments, an electromagnetic device was manufactured to generate the magnetic field. The experiments were performed using magnetic fields B= 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12 and 0.15 T. Numerical study was performed to show the accuracy of the results obtained from experimental study. In numerical study, Computational Fluid Dynamics (CFD) analysis was used. The ANSYS Fluent 14.0 code based on the finite volume method was used for the CFD analysis. In the experiments, the applied magnetic field decreased the flow rate of the fluids by increasing viscosity. In case of 10 mm pipe diameter, the flow velocity of the A, B and C fluids were obtained as 0.593, 0.749 and 0.938 m/s respectively in situation B=0 T. When magnetic field was applied as B=0.15 T, decreases have occurred in the velocity of A, B and C fluids as 95.27%, 90.24% and 85.6% respectively. Similarly, in case of 15 mm pipe diameter, 96.87%, 95.06% and 90.76% decreases have occurred in the flow velocity of A, B and C fluids having 0.301, 0.363 and 0.445 m/s flow velocity respectively. The results were compared for the magnetic field values B=0, 0.05, 0.10 and 0.15 T. It was found that the differences between experimental and numerical study were found as 6.10% and 1.71% for the B=0 T and B≠0 T situations respectively when the pipe has 10 mm pipe diameter. In case of 15 mm pipe diameter, the differences were found as 2.31% and 0.89%. As a result, it was found that the results obtained from experimental and numerical study were qualitatively and quantitatively in good agreement
Bochdalek hernia with concomitant partial situs inversus in an adult
We report the case of 44-year-old woman with a left-sided Bochdalek hernia
(BH) with concomitant partial situs inversus. The patient was presented from
the outpatient clinic with lower chest discomfort. She had suffered from abdominal
pain for one year, with no history of trauma, previous surgery, or
extreme physical exertion. Chest radiograph revealed a large left-sided BH.
The patient underwent thoracotomy. Intestinal organs, containing bowel,
small intestine, caecum, and appendix were seen in the left hemithorax. Because
of the failure to reduce the intestinal organs into the peritoneal cavity,
laparotomy was performed. The right side of the abdominal cavity was empty.
In conclusion, partial situs inversus was diagnosed. The diaphragmatic
defect was repaired with non-absorbable sutures via laparotomy, and with
a prolene mesh via thoracotomy. Bochdalek hernia with partial situs inversus is
a rare clinical entity with none reported in medical literature. (Folia Morphol
2010; 69, 2: 119-122
A review of Morgagni and Bochdalek hernias in adults
The incidence of Bochdalek and Morgagni hernias among adults is very rare.
The purpose of this study was to determine retrospectively the prevalence and
characteristics of adult Bochdalek and Morgagni hernias in a decade. Consequently,
we demonstrated 12 patients with Bochdalek and 8 patients with
Morgagni hernias. We presented plain radiography, operation images, and
computed tomography findings of an adult patient with symptoms due to Bochdalek
and Morgagni hernias. In surgical repair, the Morgagni hernia is best
approached via laparotomy, and the Bochdalek hernia can be treated through
thoracotomy or laparotomy. (Folia Morphol 2011; 70, 1: 5-12
Observation of spin Coulomb drag in a two-dimensional electron gas
An electron propagating through a solid carries spin angular momentum in
addition to its mass and charge. Of late there has been considerable interest
in developing electronic devices based on the transport of spin, which offer
potential advantages in dissipation, size, and speed over charge-based devices.
However, these advantages bring with them additional complexity. Because each
electron carries a single, fixed value (-e) of charge, the electrical current
carried by a gas of electrons is simply proportional to its total momentum. A
fundamental consequence is that the charge current is not affected by
interactions that conserve total momentum, notably collisions among the
electrons themselves. In contrast, the electron's spin along a given spatial
direction can take on two values, "up" and "down", so that the spin current and
momentum need not be proportional. Although the transport of spin polarization
is not protected by momentum conservation, it has been widely assumed that,
like the charge current, spin current is unaffected by electron-electron (e-e)
interactions. Here we demonstrate experimentally not only that this assumption
is invalid, but that over a broad range of temperature and electron density,
the flow of spin polarization in a two-dimensional gas of electrons is
controlled by the rate of e-e collisions
Self-similar dynamics of order parameter fluctuations in pump-probe experiments
Upon excitation by a laser pulse, broken-symmetry phases of a wide variety of
solids demonstrate similar order parameter dynamics characterized by a dramatic
slowing down of relaxation for stronger pump fluences. Motivated by this
recurrent phenomenology, we develop a simple non-perturbative effective model
of dynamics of collective bosonic excitations in pump-probe experiments. We
find that as the system recovers after photoexcitation, it shows universal
prethermalized dynamics manifesting a power-law, as opposed to exponential,
relaxation, explaining the slowing down of the recovery process. For strong
quenches, long-wavelength over-populated transverse modes dominate the
long-time dynamics; their distribution function exhibits universal scaling in
time and space, whose universal exponents can be computed analytically. Our
model offers a unifying description of order parameter fluctuations in a regime
far from equilibrium, and our predictions can be tested with available
time-resolved techniques
Recommended from our members
Amplitude dynamics of the charge density wave in LaTe3: Theoretical description of pump-probe experiments
We formulate a dynamical model to describe a photo-induced charge density
wave (CDW) quench transition and apply it to recent multi-probe experiments on
LaTe [A. Zong et al., Nat. Phys. 15, 27 (2019)]. Our approach relies on
coupled time-dependent Ginzburg-Landau equations tracking two order parameters
that represent the modulations of the electronic density and the ionic
positions. We aim at describing the amplitude of the order parameters under the
assumption that they are homogeneous in space. This description is supplemented
by a three-temperature model, which treats separately the electronic
temperature, temperature of the lattice phonons with stronger couplings to the
electronic subsystem, and temperature of all other phonons. The broad scope of
available data for LaTe and similar materials as well as the synergy
between different time-resolved spectroscopies allow us to extract model
parameters. The resulting calculations are in good agreement with ultra-fast
electron diffraction experiments, reproducing qualitative and quantitative
features of the CDW amplitude evolution during the initial few picoseconds
after photoexcitation
A Numerical Analysis of Laminar Forced Convection and Entropy Generation of a Diamond-Fe3O4/Water Hybrid Nanofluid in a Rectangular Minichannel
The convective heat transfer and entropy generation of diamond-Fe3O4/water hybrid nanofluid through a rectangular minichannel is numerically investigated under laminar flow conditions. Nanoparticle volume fractions for diamond-Fe3O4/water hybrid nanofluid are in the range 0.05-0.20% and Reynolds number varies from 100 to 1000. The finite volume method is used in the numerical computation. The results obtained for diamond-Fe3O4/water hybrid nanofluid are compared with those of diamond/water and Fe3O4/water conventional nanofluids. It is found that 0.2% diamond-Fe3O4 hybrid nanoparticle addition to pure water provides convective heat transfer coefficient enhancement of 29.96%, at Re=1000. The results show that diamond-Fe3O4/water hybrid nanofluid has higher convective heat transfer coefficient and Nusselt number when compared with diamond/water and Fe3O4/water conventional nanofluids. For diamond-Fe3O4/water hybrid nanofluid, until Re=600, the lowest total entropy generation rate values are obtained for 0.20% nanoparticle volume fraction. However, after Re=800, diamond-Fe3O4/water hybrid nanofluid with 0.20% nanoparticle volume fraction has the highest total entropy generation rate compared to other nanoparticle volume fractions. A similar pattern emerges from the comparison with diamond/water and Fe3O4/water conventional nanofluids. For 0.2% nanoparticle volume fraction, diamond-Fe3O4/water hybrid nanofluid and diamond/water nanofluid have their minimum entropy generation rate at Re=500 and at Re=900, respectively. Moreover, this minimum entropy generation rate point changes with nanoparticle volume fraction values of nanofluids
- …