26,475 research outputs found

    Solitary waves of Bose-Einstein condensed atoms confined in finite rings

    Full text link
    Motivated by recent progress in trapping Bose-Einstein condensed atoms in toroidal potentials, we examine solitary-wave solutions of the nonlinear Schr\"odinger equation subject to periodic boundary conditions. When the circumference of the ring is much larger than the size of the wave, the density profile is well approximated by that of an infinite ring, however the density and the velocity of propagation cannot vanish simultaneously. When the size of the ring becomes comparable to the size of the wave, the density variation becomes sinusoidal and the velocity of propagation saturates to a constant value.Comment: 6 pages, 2 figure

    Measuring gravitational lens time delays using low-resolution radio monitoring observations

    Get PDF
    Obtaining lensing time delay measurements requires long-term monitoring campaigns with a high enough resolution (< 1 arcsec) to separate the multiple images. In the radio, a limited number of high-resolution interferometer arrays make these observations difficult to schedule. To overcome this problem, we propose a technique for measuring gravitational time delays which relies on monitoring the total flux density with low-resolution but high-sensitivity radio telescopes to follow the variation of the brighter image. This is then used to trigger high-resolution observations in optimal numbers which then reveal the variation in the fainter image. We present simulations to assess the efficiency of this method together with a pilot project observing radio lens systems with the Westerbork Synthesis Radio Telescope (WSRT) to trigger Very Large Array (VLA) observations. This new method is promising for measuring time delays because it uses relatively small amounts of time on high-resolution telescopes. This will be important because instruments that have high sensitivity but limited resolution, together with an optimum usage of followup high-resolution observations from appropriate radio telescopes may in the future be useful for gravitational lensing time delay measurements by means of this new method.Comment: 10 pages, 7 figures, accepted by MNRA

    Solitary-wave solutions in binary mixtures of Bose-Einstein condensates under periodic boundary conditions

    Full text link
    We derive solitary-wave solutions within the mean-field approximation in quasi-one-dimensional binary mixtures of Bose-Einstein condensates under periodic boundary conditions, for the case of an effective repulsive interatomic interaction. The particular gray-bright solutions that give the global energy minima are determined. Their characteristics and the associated dispersion relation are derived. In the case of weak coupling, we diagonalize the Hamiltonian analytically to obtain the full excitation spectrum of "quantum" solitary-wave solutions.Comment: 11 pages, 2 figure

    Solitary waves in mixtures of Bose gases confined in annular traps

    Full text link
    A two-component Bose-Einstein condensate that is confined in a one-dimensional ring potential supports solitary-wave solutions, which we evaluate analytically. The derived solutions are shown to be unique. The corresponding dispersion relation that generalizes the case of a single-component system shows interesting features.Comment: 4 pages, 1 figur

    Solitary waves and yrast states in Bose-Einstein condensed gases of atoms

    Full text link
    Considering a Bose-Einstein condensed gas confined in one dimension with periodic boundary conditions, we demonstrate that, very generally, solitary-wave and rotational excitations coincide. This exact equivalence allows us to establish connections between a number of effects that are present in these two problems, many of which have been studied using the mean-field approximation.Comment: Revised version, where the generality of our arguments is presented more clearl

    New approach to the thermal Casimir force between real metals

    Full text link
    The new approach to the theoretical description of the thermal Casimir force between real metals is presented. It uses the plasma-like dielectric permittivity that takes into account the interband transitions of core electrons. This permittivity precisely satisfies the Kramers-Kronig relations. The respective Casimir entropy is positive and vanishes at zero temperature in accordance with the Nernst heat theorem. The physical reasons why the Drude dielectric function, when substituted in the Lifshitz formula, is inconsistent with electrodynamics are elucidated. The proposed approach is the single one consistent with all measurements of the Casimir force performed up to date. The application of this approach to metal-type semiconductors is considered.Comment: 14 pages, 6 figures. Proceedings of QFEXT07, to appear in J. Phys.

    Magnetic levitation on a type-I superconductor as a practical demonstration experiment for students

    Full text link
    We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 liter liquid helium dewar. We study the equilibrium position of a magnet that levitates over a lead bowl immersed in a liquid hand-held helium cryostat. We combine the measurement of the position of the magnet with simple analytical calculations. This provides a vivid visualization of magnetic levitation from the balance between pure flux expulsion and gravitation. The experiment contrasts and illustrates the case of magnetic levitation with high temperature type-II superconductors using liquid nitrogen, where levitation results from partial flux expulsion and vortex physics

    Kramers-Kronig relations for plasma-like permittivities and the Casimir force

    Get PDF
    The Kramers-Kronig relations are derived for the permittivity of the usual plasma model which neglects dissipation and of a generalized model which takes into account the interband transitions. The generalized plasma model is shown to be consistent with all precision experiments on the measurement of the Casimir force.Comment: 9 pages, 2 figures, 1 table; to appear in J. Phys. A: Math. Theor. (fast track communication
    corecore