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a b s t r a c t

The speciation reactions that take place in mixtures of water (H2O), carbon dioxide (CO2), and alka-
nolamines make the modelling of the chemical and fluid-phase equilibria of these systems challenging.
We demonstrate for the first time that the statistical associating fluid theory (SAFT), formulated within
a group-contribution (GC) framework based on transferable intermolecular square-well (SW) potentials
(SAFT-� SW), can be used to model successfully such complex reacting systems. The chemical reactions
in these mixtures are described via a physical association model. The concept of second-order groups
is introduced in the SAFT-� SW approach in order to deal with the multifunctional nature of the alka-
nolamines. In developing the models, several compounds including ethylamine, propylamine, ethanol,
propanol, 2-aminoethanol, and 3-amino-1-propanol are considered. We present calculations and pre-
dictions of the fluid-phase behaviour of these compounds and a number of their aqueous mixtures with
and without CO2. The group-contribution nature of the models is used to predict the absorption of CO2

in aqueous solutions of 5-amino-1-pentanol and 6-amino-1-hexanol. The proposed predictive approach
offers a robust platform for the identification of new solvents and mixtures that are viable candidates for
CO2 absorption, thereby guiding experimental studies.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The dependence of world economies on the combustion of fossil
fuels, such as coal, oil, and natural gas, to fulfil increasing energy
requirements has led to a rise in the annual global emissions of
carbon dioxide (CO2) of approximately 80% between 1970 and
2004 [1]. In conjunction with growing concerns on the impact of
these emissions on the climate [2] there is evidence that the CO2
released to the atmosphere interacts with the oceans, resulting in
a decrease in pH (ocean acidification) [3] and, as a consequence,
is a threat to marine food chains [4]. Thus, the need to develop
technologies for the capture of CO2 to prevent its release into
the atmosphere is increasingly pressing. Indeed, the combustion
of fossil fuels accounts for 86% of anthropogenic greenhouse-gas
emissions, while the rest comes mostly from changes in land use,
e.g., deforestation and chemical processing [5]. A viable medium-
term solution for large point-source emission locations, such as
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coal- or gas-fired power stations, is the use of solvent-based absorp-
tion processes to separate the CO2 from the flue gas [6,7]. Such
processes often rely on amine-based solvents, and make use of the
reversibility of the chemical reactions that lead to the chemisorp-
tion of CO2 in the liquid phase. These processes however incur
a significant economic penalty due to the large energetic con-
sumption that arises from the regeneration of the solvent. These
energy requirements are usually met by diverting steam from the
power plant turbines and are therefore accompanied by an overall
decrease in the efficiency of the power plant [5,7]. Commonly-used
solvents such as aqueous monoethanolamine (MEA) also suffer
from susceptibility to degradation, especially given the presence
of oxygen in flue gas [8]. A key challenge for CO2 capture is thus
the design of solvents and solvent blends that can improve the eco-
nomic and environmental performance of capture processes. Many
aspects of the choice of solvent affect the viability of the overall pro-
cess, and thermodynamic properties play a particularly important
role as they define the absorption capacity and selectivity of the
solvent, as well as the energy required for regeneration. There is
however a lack of predictive approaches that can be used to esti-
mate the properties of potential solvents and solvent mixtures in
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the absence of experimental data. The aim of our current study is
the development of appropriate models and methods for the pre-
dictive thermodynamic description of solvents and their mixtures
with CO2, in order to enable the computer-aided design of optimal
solvents and solvent blends to separate CO2 from the flue gas.

The modelling of aqueous mixtures of alkanolamines and CO2
presents a number of challenges. The first difficulty arises from
the complex chemical nature of alkanolamines, which feature at
least two highly polarizable functional groups, a hydroxyl and an
amino group. Hydrogen bonding and polarity are important factors
in the thermodynamic behaviour of these compounds, which lead
to highly non-ideal interactions with water (H2O). A second chal-
lenge arises from the reactive nature of mixtures of alkanolamines
with H2O and CO2. In particular, alkyl-functional primary and sec-
ondary amines react with CO2 to form carbamates; the formation
of carbamates is typically described by the zwitterion mechanism
[9,10]. The characteristics of the reactions and in particular the
equilibrium constants depend on the molecular structure of the
solvent and the process conditions, such as the temperature (see
Refs. [10–12] for detailed studies of the types of reactions involved
in these mixtures). Carbamate formation is reversible, allowing a
reacting amine-based solvent to be recycled in the carbon-capture
processes.

Given the importance and complexity of these mixtures, a
number of theoretical approaches have been applied to study the
fluid-phase behaviour of the alkanolamines with CO2. A particu-
larly successful approach is the use of the eNRTL activity coefficient
model, with a model of the chemical equilibrium that includes
temperature-dependent equilibrium constants, coupled with a
simple model of the gas phase (typically employing Henry’s con-
stant) [13–16]. As an alternative, the UNIQUAC activity coefficient
model has been extended to study the absorption of CO2 in aque-
ous solutions of alkanolamines [17,18]. These approaches are very
well-suited to model mixtures for which extensive experimental
data are available, and they are easily integrated within models of
CO2 capture processes, providing a seamless link between thermo-
dynamic behaviour and process performance. However, the large
number of parameters required to model all of the relevant neutral
and ionic species and the corresponding chemical equilibria makes
it difficult to develop predictive models for novel solvents within
such a framework. For each potentially viable new solvent, develop-
ing a thermodynamic model requires extensive data on speciation
over a range of temperatures, as well as chemical and fluid-phase
equilibrium data. Furthermore, if solvent mixtures are of inter-
est additional experimental data must be gathered. This makes
the development and assessment of new solvents both costly and
time-consuming and clearly highlights the need for more predic-
tive models that do not require experimental data on the specific
molecule to be investigated, be it a pure component or a component
of a mixture.

In the search for more predictive approaches, a promising
avenue of investigation is the field of group-contribution (GC)
methods (see Ref. [19] for a recent review of the area). In these
methods, it is assumed that the thermodynamic properties of a
compound can be derived from the independent contributions
made by the chemical functional groups that appear in the molec-
ular structure. Importantly, the contribution of each chemical or
functional group is assumed to be transferable and this allows
the prediction of the thermodynamic properties of new com-
pounds. Several GC approaches have been proposed, and a few
representative examples are briefly mentioned here. GC meth-
ods were first developed as empirical relations for the prediction
of pure-component properties, such as the approaches developed
by van Krevelen and Chermin [20] and later by Joback and Reid
[21]. The GC concept has also been widely used to study binary
and multi-component mixtures, including prominent examples

such as the widely applied universal functional activity coefficient
(UNIFAC) approach [22–25], as well as the analytical solution of
groups (ASOG) method [26]. Within this methodology the activ-
ity coefficients of the components in a liquid phase are calculated
based on the contributions of the functional groups present and
on their composition. The application of the GC concept has been
extended to model the gas and liquid phases using the same
equation of state (EoS) by developing predictive mixing rules for
the molecular parameters in the EoS based on the activity coef-
ficient GC methods. The predictive Soave–Redlich–Kwong (PSRK)
[27], the generalized volume-translated Peng–Robinson (VTPR) EoS
of Ahlers and Gmehling [28–30], and the second-order modified
Huron-Vidal (MHV2) [31,32] approaches are of this type. Other
methods have focused on applying the group contribution idea
to determine binary interaction parameters for use with conven-
tional mixing rules; this is the case of the predictive Peng–Robinson
1978 (PPR78) EoS [33,34] and the related PR2SRK EoS [35,36],
which follow the work of Abdoul and co-workers [37]. A final
class of approaches involves the direct description of the param-
eters of an equation of state within a GC formalism; these ideas
have been implemented within the GC-EoS [38,39] and the group
contribution associating EoS (GCA-EoS) [40], both based on a
generalized van der Waals EoS. Further examples of the latter
type of methodologies are GC versions of the simplified per-
turbed hard chain theory (GSPHCT) [41], of the lattice-fluid theory
(GCLF-EOS) [42], and of the statistical associating fluid theory
(SAFT) EoS, based on a homonuclear adaptation of the SAFT-VR
approach, as developed in Refs. [43–47], on a heteronuclear refor-
mulation of the SAFT-VR approach using various intermolecular
potentials [48–57], or on a group-contribution version of PC-SAFT
[58,59].

Despite the significant body of work on GC methods, the
application of these methods to the modelling of carbon diox-
ide + water + alkanolamine mixtures has been limited. The phase
behaviour of mixtures of primary, secondary, and tertiary alky-
lamines with hydrocarbons and alcohols [60] as well as mixtures
containing alkanolamines and H2O [61] has for example been
described using the GCA-EoS [40], where successful predictions
of the solubility of hydrocarbons in aqueous solutions of alka-
nolamines have been presented [61]. The GC-SAFT-VR approach
[50,51] has been applied to describe mixtures of primary and sec-
ondary amines with alcohols and hydrocarbons, as well as some
alkanolamines [62]. The GC-PPC-SAFT [44–46] EoS has also been
applied to mixtures of primary, secondary, and tertiary amines
with alkanes and alcohols [63] including some pure alkanolamines
[64]. Hybrid approaches have been developed to model aqueous
solutions of alkanolamines and CO2, so that some elements of the
UNIFAC model are enhanced with empirical correlations based on
additional experimental information [65,66]. For example, H2O,
monoethanolamine, and CO2 mixtures have been successfully
modelled using UNIFAC extended to electrolytic systems with
chemical equilibrium constants and Henry’s law constants for CO2
derived from experimental data [66]. To the best of our knowl-
edge, however, no attempt has been presented so far to model
both the chemical and phase equilibria of aqueous mixtures of
alkanolamines with CO2 based entirely on a group contribution
approach. This is partly because the modelling of multifunctional
molecules such as alkanolamines is an even greater challenge with
GC methods than with standard thermodynamic approaches. The
assumption of the transferability of the group parameters from
molecule to molecule, regardless of the environment, which is cen-
tral to the GC paradigm, often breaks down in such cases. Indeed,
when two highly polarizable functional groups are in close prox-
imity, it is expected that a new set of group parameters may be
required to describe their behaviour accurately, i.e., that the param-
eters may not be transferable. The other significant issue is that
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there is no systematic framework to model reaction equilibrium
within thermodynamic GC methods.

Recent developments in the simultaneous modelling of chemi-
cal and phase equilibria for aqueous mixtures of alkanolamines and
CO2 offer a promising direction for research. Traditional chemical
approaches [67–69,22–25,70,15,16] have been used extensively to
deal with the occurrence of chemical reactions and formation of
new species. The concentrations of the species that are assumed
to be in chemical equilibrium for these reactions are expressed in
terms of temperature, density, composition, and the corresponding
equilibrium constants. The species that are not at equilibrium can
be treated naturally within such a framework through the use of
kinetic rate expressions and appropriate mass balances. An alter-
native is to model the reactions not through the formation of new
species but in terms of the aggregation of the reactants driven by the
presence of strong intermolecular interactions [71,72]. Despite the
differences in the physical and chemical perspectives, which were
a source of heated debate in the early 20th century [73], the current
opinion is that the chemical and physical descriptions are equiva-
lent under appropriate assumptions [74]. Physical theories rooted
in statistical mechanics, such as SAFT [75,76], have been shown to
provide an equivalent description to chemical and quasi-chemical
approaches as long as the reactions do not lead to significantly
different chemical species [77]. The use of a physical approach pre-
cludes the need for information on the equilibrium constants of the
chemical reactions or on the concentrations of the product species
during the development of models of the relevant compounds. This
reduced dependence on experimental information makes it possi-
ble to develop models based solely on equilibrium concentration
data for the reactants. This type of physical approach was employed
successfully for mixtures relevant to carbon-capture processes
within the framework of SAFT in previous work [78,79], where the
statistical associating fluid theory for potentials of variable range
(SAFT-VR) [80,81] with square well (SW) intermolecular potential
interactions was applied to the describe aqueous mixtures of differ-
ent alkanolamines with CO2. SAFT-VR SW is a homonuclear version
of the SAFT theory in which intermolecular parameters are used to
represent whole molecules rather than specific functional groups.
The approach was further applied successfully to the modelling of
the absorption of CO2 in several aqueous solutions of multifunc-
tional amines [79]. This implicit treatment of the reactions was
shown to provide a satisfactory prediction of the speciation in these
systems, in spite of the inherent assumption that key ionic species
(the protonated amine and carbamate) are present as tightly bound
pairs. The dielectric constant of the MEA solvent medium at ambi-
ent conditions is considerably lower than that for H2O. This means
that the ionic interactions will be less screened than in pure H2O
and we would therefore also expect that ion pairing would be
strong. The approach can be used to provide useful insights into
the thermodynamic behaviour and characteristics of these com-
plex systems over a wide range of temperatures, pressures, and
compositions. The fact that the model parameters are compound-
specific only allows the modelling of compounds and mixtures for
which data are available. In an attempt to establish a compara-
ble methodology, but with enhanced predictive capabilities and
with the ultimate aim of developing a formulation platform for
solvent design, in our current work we assess the viability of devel-
oping an accurate representation of the thermodynamic behaviour
of aqueous mixtures of alkanolamines with CO2 within the context
of a GC approach. Specifically, the SAFT-� SW group-contribution
approach [48,49] is used, wherein the interactions between func-
tional segments are modelled using a square-well intermolecular
potential. SAFT-� SW has already been used to describe successfully
a wide range of fluids that include pure component systems and
mixtures including n-alkanes, branched alkanes, n-alkylbenzenes,
unsaturated hydrocarbons, 2-ketones, carboxylic acids, and

primary amines [48,49], and also aqueous mixtures of hydrocar-
bons and 1-alkanols [82]. In our current paper, the application of the
SAFT-� SW framework is extended to aqueous mixtures of amines
and alkanolamines with and without CO2.

We focus specifically on the primary alkanolamines such as
2-aminoethanol (monoethanolamine or MEA) and 3-amino-1-
propanol (MPA) because of the current interest in their use as
solvents for CO2 chemical absorption processes [83,84]. Models
for these molecules and their mixtures with H2O and CO2 are
obtained from the study of pure alkylamines and alkanolamines, as
well as from representative mixtures where experimental data are
available. A physical association scheme is used to treat chemical
reactions. We use the concept of second-order groups [70,85–88]
to deal with the multifunctional nature of the molecules. A table of
group parameter values is developed within this framework that
provides the predictive capabilities necessary to identify promis-
ing solvents. Our current paper is organized as follows: in Section
2 we outline the main expressions of the SAFT-� SW theory as
well as the methods employed in the development of the models;
in Section 3, we present our findings to establish the founda-
tions for the description of the fluid-phase behaviour of aqueous
multi-functional alkanolamines and CO2 within the SAFT-� SW
framework; concluding remarks are given in Section 4.

2. Methodology

The statistical association fluid theory (SAFT) [75,76] is an
EoS based on the first-order thermodynamic perturbation the-
ory (TPT1) of Wertheim for the explicit treatment of associating
[89–92] and chain fluids [93,94]. The theory has been shown to be
very successful in modelling a variety of complex associating flu-
ids and fluid mixtures [95–98]. In its original incarnation the SAFT
EoS was developed for a homonuclear representation of associat-
ing chains (i.e., molecules formed from identical segments) and the
early work on GC-based SAFT approaches retained such a molec-
ular representation. Representative examples of these approaches
are the papers of Tobaly and co-workers [44,45] and Vijande et al.
[43]. The formulation of SAFT is not restricted by a molecular model
and it indeed has been extended to describe the thermodynamic
properties of heteronuclear chain fluids (i.e., comprising seg-
ments of different size and/or energy-related parameters). One of
these earlier extensions of Wertheim’s approach considered purely
repulsive heteronuclear molecules formed from hard-sphere seg-
ments of different diameters that were either tangentially bonded
[99,100] or in a fused configuration [101]. Heteronuclear versions of
the SAFT equation of state have also been developed for attractive
van der Waals [102], square-well (SW) [103–105], and Lennard-
Jones (LJ) [106,107] segments. This work has formed the basis for
the development of GC SAFT approaches in which each type of
segment of the heteronuclear molecular chain corresponds to a
chemical functional group. It has been shown (perhaps unsurpris-
ingly) that a fused heteronuclear representation is more suitable
in the description of the properties of real compounds [48], and
this concept has been pursued in several approaches of this type
[47,49,50–55,57,58,88].

2.1. Model

Within the framework of SAFT-� SW [48,49] molecules are mod-
elled according to a group contribution scheme, in terms of the
distinct chemical groups that they comprise. The representation
is based on heteronuclear molecular chains, where each segment
or group of identical segments corresponds to a given chemical
functional group. The monomeric segments are allowed to overlap,
resulting in a fused heteronuclear group-contribution molecular
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Fig. 1. Schematic representation of the heteronuclear molecular models employed
to describe: (a) water; (b) carbon dioxide; (c) monoethanolamine (MEA); (d)
propanol; (e) propylamine within the SAFT-� SW framework. The distinct groups
(H2O, CO2, CH2OH, CH2NH2, CH2, and CH3) are highlighted with different colours
and the association sites are indicated as the small semi-circular segments. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

model. Some schematic examples of molecular models for the com-
pounds studied in our current work are presented in Fig. 1. The
interactions between segments are modelled by means of the SW
intermolecular potential. We should note, however, that the theo-
retical framework is general and can be extended to other types of
interaction potentials [53,54,80,108–111]. A given chemical group
k is fully characterized within SAFT-� SW by the number �∗

k
of

identical segments it comprises, the hard-core diameter of each
segment �kk, and the well-depth εkk and range �kk of the attrac-
tive dispersion interactions. The degree to which each functional
group contributes to the overall molecular properties is character-
ized in terms of the shape factor Sk. In the case of associating groups,
additional off-centre square-well association sites are placed on the
appropriate segments to mediate the directional interactions that
arise, including hydrogen bonding. The total number of associa-
tion site types for group k is represented by NST,k and the number
of sites for each association site type by na,k (a = 1, . . ., NST,k). The
sites are labelled as e or H, typically representing either a lone-pair

of electrons on an electronegative atom or hydrogen atoms in the
functional group. For the purposes of our current work one e site
is considered for each lone pair and one H site for each hydrogen
atom, and only e–H bonding is permitted. For CO2 two sites, namely
˛1 and ˛2, are included to mediate the reaction of the amine and
CO2. We do not consider ˛1–˛2 bonding (nor any interactions other
than that between the amine lone-pair e site of the CH2NH2 group
and the ˛1 and ˛2 sites of CO2). A complete description of the asso-
ciation interactions requires the determination of two additional
parameters for each pair of site types on a given segment type k,
namely the energy �HB

kkab
and range rc

kkab
of the association between

sites of type a and b. The a and b sites are located at a specific dis-
tance from the centre of the segment, as will be discussed in Section
2.2.

To characterize the interactions between different segments,
a number of unlike interaction parameters need to be specified.
The unlike segment diameter between segments of types k and
l is obtained as an arithmetic mean of the like segment diame-
ters, �kl = (�kk + � ll)/2. Likewise, the range of the unlike dispersion
interactions is determined from �kl = (�kk�kk + � ll�ll)/(�kk + � ll). The
energy of the unlike dispersion interactions can be obtained by
means of a geometric mean, �kl = √

�kk�ll . For the association inter-
actions between a site of type a on group k and site of type b on
group l, the unlike energy can be obtained as a geometric mean,
�HB

klab
=
√

�HB
kkaa

�HB
llbb

, while the range rc
klab

is calculated by applica-
tion of an appropriate combining rule for the bonding volume,
Kklab, as explained in detail in Refs. [78,82]. Typically, however,
the unlike interaction parameters �kl, �HB

klab
, and rc

klab
characteriz-

ing the potentials between different chemical groups are treated
as adjustable parameters to reproduce accurately the fluid-phase
behaviour of complex compounds and mixtures. For many mix-
tures, the commonly-employed combining rules are known to be
inappropriate, particularly due to polarization effects [112], and
allowing the unlike interactions to deviate from the fixed pre-
scription ensures a greater reliability of the parameters. Where no
experimental data are available to estimate the unlike-interaction
parameters, the combining rules can be used to obtain a first esti-
mate. In many cases, this would lead to a reduction in the accuracy
of the predictions, but it allows one to provide a useful assessment
of the potential performance of new molecules or mixtures, espe-
cially when combined with a sensitivity analysis that can quantify
the impact of parametric uncertainty.

It should be noted that the SAFT-� SW group-contribution
approach is a generalization of the homonuclear SAFT-VR SW for-
mulation [80,81] and for molecules comprising identical segments
the two theories become identical. This facilitates the direct use of
models readily available for molecular groups with SAFT-VR SW,
such as H2O and CO2, within the context of SAFT-� SW.

2.2. Theory

Within the SAFT-� SW approach the Helmholtz free energy A
of a fluid mixture of N chain molecules is expressed as a sum of
separate contributions through the dimensionless Helmholtz free
energy, a = A/(NkBT):

a = aIDEAL + aMONO. + aCHAIN + aASSOC.. (1)

Here, aIDEAL corresponds to the ideal contribution, aMONO. to the
contribution due to the interaction between monomeric segments,
aCHAIN to the contribution due to the formation of heterosegmented
chains, and aASSOC. to the contribution to the free energy due to
intermolecular association; T is the absolute temperature, and kB is
the Boltzmann constant.
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The free energy of an ideal-gas mixture is given by [113]

aIDEAL =
NC∑
i=1

xi ln(�i	
3
i ) − 1, (2)

where NC is the total number of components, xi = Ni/N is the mole
fraction for Ni molecules of component i, �i = Ni/V is the correspond-
ing number density, and 	3

i
represents the thermal de Broglie

volume of species i, which incorporates all of the kinetic (trans-
lational, rotational, and vibrational) contributions to the partition
function of the molecule. The contribution to the free energy due
to these degrees of freedom can be evaluated from experimental
ideal heat capacity data, although it does not need to be specified
explicitly for phase equilibrium studies.

The monomer contribution is obtained from a Barker–
Henderson [114] high-temperature perturbation expansion up to
second order, so that

aMONO. = aHS + ˇa1 + ˇ2a2, (3)

where ˇ is defined as ˇ = 1/(kBT). The free energy of the reference
hard-sphere mixture aHS is obtained from the expressions of Bou-
blík [115] and Mansoori et al. [116]. The first-order term a1 is the
mean-attractive energy, and the second-order term a2 describes
the fluctuations of the attractive energy due to the action of the
attractive well [113]. The exact determination of a2 requires a
knowledge of higher-order (up to four-body) correlation functions.
In practice this term is approximated using a local compressibil-
ity approximation. For details the reader is referred to the original
SAFT-� SW papers [48,49].

For the calculation of the contributions to the free energy due to
chain formation and association, a number of effective molecular
parameters are defined, based on the group-specific parameters,
namely the average molecular segment size �ii, as well as the aver-
age range �ii and well-depth �ii of dispersion interactions. These
average parameters are obtained by means of appropriate mix-
ing rules based on the group-specific parameters, as defined in
Refs. [48,49]. All unlike effective molecular parameters are obtained
from appropriate combining rules [48], so that their introduction
does not lead to an increase of the number of adjustable parameters
required in the theory.

The contribution to the free energy due to the formation of
chains of SW segments can be written as [94,117]

aCHAIN = −
NC∑
i=1

xi

(
NG∑
k=1

�k,i�
∗
kSk − 1

)
ln(gSW

ii (�ii; 
3)), (4)

where NG is the total number of groups, �k,i is the number of groups
of type k in component i, and gSW

ii
(�ii; 
3) is the SW radial distri-

bution function at the effective contact distance �ii and packing
fraction 
3 of the mixture. The SW radial distribution function is
obtained from a high-temperature expansion [118,119,114] to first
order (for further details see Refs. [80,81]).

The contribution to the free energy due to the association medi-
ated by NST,k site-types on group type k can be calculated within
the framework of the theory of Wertheim as [89–92,120]

aASSOC. =
NC∑
i=1

xi

NG∑
k=1

�k,i

NST,k∑
a=1

nka

[
ln Xika + 1 − Xika

2

]
. (5)

The first sum is over species i, the second is over groups k, and the
third is over site types a in group k. In this expression Xika is the
fraction of groups in molecules of species i not bonded at a site of

type a of group k, and is obtained from the numerical solution of a
mass-action equation [120]:

Xika = 1

1 +
∑NC

j=1

∑NG
l=1

∑NST,k

b=1 �xj�ljnlbXjlb�ijklab

, (6)

where �ijklab characterizes the association strength between site a
on group k of molecule i and site b on group l of molecule j. It is deter-
mined from the contact value gSW

ij
(�ij; 
3) of the radial distribution

function of the monomer fluid as

�ijklab = fijklabgSW
ij (�ij; 
3)Kijklab, (7)

where it should be noted that the SW radial distribution function
gSW

ij
(�ij; 
3) is evaluated at the effective contact distance �ij and

actual packing fraction 
3. The Mayer f-function fijklab of the site-site
interaction is given as a function of the association energy as fijklab =
[exp(εHB

klab
/(kBT)) − 1]. The site-site bonding volume is represented

by Kijklab. Although the degree of hydrogen bonding in the system
is fully characterized by the strength of the site-site interaction
and the overall bonding volume, it is often more convenient and
physically intuitive to describe the volume accessible to bonding
in terms of the cut-off rc

ijab
and of the distance rd

ijab
/�ij = 0.25 from

the centre of the sphere of interaction.

2.3. Parameter estimation

Appropriate values for the SAFT intermolecular model param-
eters for specific groups are determined by comparison with
experimental fluid-phase equilibrium data. As is common practice,
experimental vapour pressure and saturated-liquid density data
are used in the determination of the group parameters. By obtain-
ing the parameters for the various groups, e.g., CH3, CH2, CH2OH,
CH2NH2, a group-group parameter database can be constructed. An
important aspect of parameter estimation within SAFT-� SW is that
the unlike group interaction parameters can often be obtained from
the pure-component experimental data for molecules comprising
the appropriate groups, without the need for mixture data. This is a
unique feature of heteronuclear approaches within a GC framework
and is in contrast to other GC techniques such as UNIFAC [22,23]
that rely exclusively on mixture data. For example, the parameters
for the CH3–CH2 interaction can be obtained solely from fluid-phase
equilibria data relating to pure n-alkane [48].

The temperature range of the vapour–liquid equilibrium data
considered for the parameter estimation is between the triple point
and 0.9 Texp

c , where Texp
c is the experimental critical temperature of

the substance under study. Temperatures closer to the critical point
are not included in favour of providing an optimal representation of
the subcritical temperature region. This is because SAFT-� SW is a
classical EoS and cannot provide an accurate simultaneous descrip-
tion of the thermodynamic properties both close to and far from the
critical region, but also because the subcritical region is of greater
interest for the mixtures considered in our study. Although renor-
malization group theory treatments have been applied to SAFT-VR
SW to tackle this issue [121–125] these have not yet been extended
to the SAFT-� SW version.

The estimation of the group parameters is carried out using the
numerical solvers of the commercial software package gPROMS®

[126]. The objective function employed is based on the maximum
likelihood formulation:

� = Np

2
ln 2 + 1

2
min

v

{
NE∑

u=1

NVu∑
v=1

NMuv∑
w=1

[
ln
(

g2
uvw

)
+ (zexp.

uvw − zcalc.
uvw (v))

2

g2
uvw

]}
, (8)

where the vector of estimated parameters is denoted by v, zcalc.
uvw

are the calculated and zexp.
uvw the experimental property values. In

Eq. (8), Np corresponds to the total number of experimental points
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considered, NE the number of experiments performed, NVu the
number of variables measured in the uth experiment, and NMuv the
number of measurements of the vth variable in experiment u. The
uncertainty in the experimental measurements is reflected in the
constant relative variance, guvw = 0.01zexp.

uvw , which is used for the
vapour pressure and density data. For compositional data, a con-
stant variance of guvw = 0.01 is employed. To assess the quality of the
descriptions of the pure-component fluid-phase equilibrium data
obtained with the optimal parameter values, we use the average
absolute deviations (%AAD):

%AAD Zi = 100
nZie

nZie∑
e=1

∣∣∣∣Z
exp.
ie

(Te) − Zcalc.
ie

(Te)

Zexp.
ie

(Te)

∣∣∣∣ , (9)

where Zie is the vapour pressure or liquid density of component i at
data point e (temperature Te), and nZie is the total number of data
points for that component. The accuracy of the description of the
fluid-phase behaviour is evaluated for the compounds included in
the estimation process and for other compounds used to test the
predictive capabilities of our approach.

As in previous work [82], the estimation of group parame-
ters based on fluid-phase equilibrium data for binary mixtures is
undertaken by means of a multistart, gradient-based, algorithm
embedding a reliable pressure temperature (P, T) flash algorithm
[127,128] for the minimization of an objective function based on
the absolute squared deviation for vapour and liquid compositions.

3. Results

The initial focus of our investigation is on the fluid-phase
behaviour of pure primary n-alkylamines, for which we revisit
previous SAFT-� SW models [49], and some short alkanolamines
selected based on the availability of experimental data (Table 1).
We then study aqueous mixtures of n-alkanes, n-alkan-1-ols, and
n-alkylamines, which are useful to determine the intermolecular
model parameters characterizing the groups characteristic of the
mixtures of interest. The investigation is then extended to ternary
aqueous mixtures of alkanolamines with CO2, based on the descrip-
tion of binary mixtures of CO2 with the alkanes and alkanols. To the
best of our knowledge, there is no CO2 + alkylamine binary (H2O-
free) mixture data, so the parameters related to the interactions
between the amine group and CO2 are obtained directly from a
consideration of ternary mixture data for these systems. An initial
GC model of some of these mixtures based on the SAFT-� SW EoS
has been proposed previously [129]. We revisit the group model
parameters reported previously for aqueous solutions of n-alkan-
1-ols by improving the overall performance over a wider range of
thermodynamic conditions. The work is complemented by pre-
senting calculations for new mixtures that were not previously
shown, including ternary mixtures of H2O + CO2 + alkanolamines.
All of the relevant parameters are presented in Tables 2, 3, and 4.
We assess the quality of the results by comparison with published
experimental data.

3.1. Pure components

Pure H2O and CO2 are described by means of homonuclear
molecular groups comprising one and two identical segments,
respectively. SAFT-� SW models for these molecules are there-
fore indistinguishable from SAFT-VR SW homonuclear models. Use
is thereby made here of the models that were developed in pre-
vious SAFT-VR SW studies [130–132]. Interaction parameters for
the chemical groups CH3, CH2, CH2OH are also taken from previ-
ous work and for details the reader is redirected to the original

Fig. 2. (a) Vapour pressure in a pressure–temperature PT representation (not-
ing the logarithmic scale for the pressure) and (b) coexisting densities in a
temperature–density T� representation for primary n-alkylamines (ethylamine to
1-decylamine) used for the determination of the parameters corresponding to the
CH2NH2 chemical group. The symbols correspond to experimental data (see Table 1
for details of the appropriate sources); the critical points correspond to correlated
experimental data from NIST [133] and the curves represent the SAFT-� SW calcu-
lations.

publications [48,49,82]. For completeness all of the intermolecular
and group parameters are presented in Table 2.

The modelling of the chemical family of the primary n-
alkylamines is carried out by defining a new chemical group, the
CH2NH2 group, which is a more coarse-grained representation than
the NH2 group considered in previous work [49]. The CH2NH2 group
is modelled as an associating group with the 3B association scheme
[143], featuring two association sites of type H, and one associa-
tion site of type e. This group is relevant to the description of the
phase behaviour of pure primary n-alkylamines and alkanolamines
as well as their aqueous mixtures. The parameters of the new
CH2NH2 group as well as those relating to its interactions with the
CH2 and the CH3 groups are estimated by using pure-component
experimental data for nine primary n-alkylamines, namely:
ethylamine [134,135], 1-propylamine [135,136], 1-butylamine
[135,137], 1-pentylamine [138,139], 1-hexylamine [139,140], 1-
heptylamine [140], 1-octylamine [141,142], 1-nonylamine [140],
and 1-decylamine [140,142] as in previous work [49]. The opti-
mal parameters for the CH2NH2 group are presented in Table 2
and those for the unlike interactions with the CH3 and CH2 groups
in Table 3. The resulting description of the fluid-phase equilibria
and the degree of agreement with experimental data are seen in
Fig. 2 and Table 1, respectively. The description obtained with our
transferable GC parameters is of equivalent quality to that obtained
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Table 1
Average absolute deviations %AADs of the vapour pressure Ps and saturated-liquid density �l calculated with the SAFT-� SW GC framework compared to experimental data
(where n is the number of data points) for primary n-alkylamines. Two different descriptions of the amine group are considered: one representing a NH2 group, based on
previous work [49], and one representing the more coarse-grained CH2NH2 group, based on our current work.

Component %AAD Ps %AAD �l

Reference T range/K n CH2NH2 NH2 Reference T range/K n CH2NH2 NH2

Ethylamine Berthoud [134] 282–403 6 4.10 1.57 Liessmann et al. [135] 223–403 11 0.88 0.68
1-Propylamine Wolff et al. [136] 283–343 13 0.93 1.35 Liessmann et al. [135] 243–443 12 0.48 0.33
1-Butylamine Daubert [137] 308–462 35 5.99 5.23 Liessmann et al. [135] 233–458 11 0.66 0.51
1-Pentylamine Antosik et al. [138] 322–377 13 1.33 0.44 Costello et al. [139] 213–453 13 1.14 0.99
1-Hexylamine Ralston et al. [140] 320–405 6 4.65 3.53 Costello et al. [139] 253–493 13 0.86 0.85
1-Heptylamine Ralston et al. [140] 326–430 7 2.66 2.13 – – – – –
1-Octylamine Steele et al. [141] 343–494 22 1.59 1.45 Oswal et al. [142] 298–328 7 0.18 0.19
1-Nonylamine Ralston et al. [140] 324–475 11 3.29 2.34 – – – – –
1-Decylamine Ralston et al. [140] 329–493 11 1.68 1.60 Oswal et al. [142] 303–328 6 0.14 0.15
Average – – – 2.99 2.18 – – – 0.62 0.53

within the traditional SAFT-VR SW approach for homonuclear mod-
els based on a determination of (non-transferable) parameters on a
molecule-by-molecule basis [144]. A comparison of the description
provided by the new CH2NH2 group with the description obtained
with the smaller NH2 group [49] is presented in Table 1, where the
%AADs for vapour pressures and coexisting liquid densities of pure
primary n-alkylamines are assessed for both models. Comparing to
previous work with SAFT-� SW [49], the use of the CH2NH2 group
rather than the NH2 group is found to provide a similar description
of the fluid-phase equilibria of pure primary n-alkylamines; the
description using the CH2NH2 group is found to be only marginally
poorer. However, as we will show, the new group provides a sig-
nificant improvement in the description of the thermodynamic
behaviour of aqueous mixtures of the primary n-alkylamines. On
this basis, the CH2NH2 group is also expected to offer a better
description of the phase behaviour of other mixtures. A similar
conclusion has been made for equivalent coarse-grained models
of aqueous mixtures with n-alkanols [82], where the CH2OH group
has been used and shown to lead to a better description of the
fluid-phase behaviour.

Having developed the group parameters for the CH2NH2 func-
tional group and the unlike interaction energies with the CH3
and CH2 groups, we proceed to determine the unlike interaction
parameters between the CH2NH2 and CH2OH groups. In this case
we obtain the unlike interaction energies from experimental data
of the fluid-phase equilibria of pure alkanolamines, namely 2-
aminoethanol (MEA) and 3-amino-1-propanol (MPA), which com-
prise both the CH2NH2 and CH2OH functional groups. In addition
to the unlike dispersion interaction between these groups, unlike
association is expected to occur between the hydrogen atoms and
the lone pairs of the electronegative atoms on both groups. Fol-
lowing the previously developed association scheme employed in
the modelling of these systems with the SAFT-VR SW approach
[78], an asymmetric association scheme is assumed for the sites in
the OH and NH2 groups, i.e., �HB

CH2NH2,CH2OH,e,H /= �HB
CH2NH2,CH2OH,H,e

and rc
CH2NH2,CH2OH,e,H /= rc

CH2NH2,CH2OH,H,e. A total of five unlike

parameters (�CH2NH2,CH2OH, �HB
CH2NH2,CH2OH,e,H , �HB

CH2NH2,CH2OH,H,e,
rc
CH2NH2,CH2OH,e,H , and rc

CH2NH2,CH2OH,H,e) are hence estimated from
the fluid-phase equilibria of MEA and MPA. The parameter

estimation is based on existing experimental data (MEA [133] and
MPA [145,146]) and the resulting optimal parameter sets are pre-
sented in Tables 3 and 4. A visual comparison with the experimental
data is shown in Fig. 3.

3.2. Aqueous mixtures of alkanes

The next phase of our current study is to use the parameters
obtained from pure-component systems in a transferable manner
to represent the corresponding mixtures. Mixtures of n-alkanes
and H2O have been studied previously with SAFT-� SW [82]. In
general it is well known that the extreme nature of the phase
separation [150] makes it challenging to model mixtures of H2O
with non-polar compounds. Because of the large differences in
the dielectric constant of the two phases as well as in the dipole
moment of H2O and the hydrophobic molecules, it especially dif-
ficult to obtain phase-independent unlike interaction parameters
[112] and thus to model simultaneously the equilibrium phases.
In previous work [82], emphasis was placed on obtaining an accu-
rate description of the alkane-rich phases (both liquid and vapour),
while small absolute (but not relative) deviations for the aque-
ous phase composition were achieved. The systems of interest in
our current work are typically aqueous mixtures containing a high
proportion of H2O, alkylamine, and CO2. Consequently, in order to
provide an improved overall description of the fluid-phase equilib-
ria at the conditions of interest, refinements have been made to the
unlike parameters presented in the previous study [129] relating to
the interactions between H2O and the alkyl groups, CH3 and CH2,
namely �CH3,H2O, �CH2,H2O and �CH3,H2O, �CH2,H2O.

The estimation of these parameters is based on solubility data
for the H2O-rich and n-alkane-rich liquid phases for aqueous mix-
ture of n-heptane at conditions of three-phase equilibria over a
temperature range from 280 to 400 K using correlated experimen-
tal data [148]. The final set of interaction parameters are gathered
in Table 3 and a visual comparison of the performance of SAFT-�
SW with the new group parameters with respect to the experi-
mental data for aqueous solutions of n-heptane is shown in Fig. 4.
The adequacy of the SAFT-� SW models developed in our current
work is additionally demonstrated in Fig. 4 with a comparison of the

Table 2
SAFT-� SW like-interaction parameters for the functional groups present in aqueous solutions of alkanolamines and CO2 (CH3, CH2, CH2NH2, CH2OH, H2O, and CO2 groups).

Group �* S �/Å � (�kk/kB)/K (�HB
kkeH

/kB)/K rc
kkeH

/Å Site e Site H Site ˛1 Site ˛2

CH3 1 0.66667 3.81048 1.4130 252.601 – – – – – –
CH2 1 0.33333 4.02758 1.6606 240.482 – – – – – –
CH2NH2 1 0.90747 3.80800 1.4836 439.350 1021.375 2.4450 1 2 – –
CH2OH 1 0.56570 4.31736 1.6519 399.959 2555.721 2.3598 2 1 – –
H2O 1 1.00000 3.03420 1.7889 250.000 1400.000 2.1082 2 2 – –
CO2 2 1.00000 2.78649 1.5157 179.270 – – – – 1 1
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Table 3
SAFT-� SW unlike dispersion energy (�kl/kB)/K for the CH3, CH2, CH2NH2, CH2OH, H2O, and CO2 functional groups. The numbers in parentheses correspond to the unlike
values of the range of the SW potential �kl; in all other cases the combining rule, �kl = (�kk�kk + �ll� ll)/(�kk + � ll), is used. The table is symmetric (i.e., �kl = �lk).

Group CH3 CH2 CH2NH2 CH2OH H2O CO2

CH3 252.601 – – – – –
CH2 261.520 240.482 – – – –
CH2NH2 254.736 297.873 439.350 – – –
CH2OH 279.939 283.702 143.247 399.959 – –
H2O 460.312 460.276 286.857 328.263 250.000 –

(1.257) (1.257) (1.740) –
CO2 196.296 189.721 480.501 245.442 224.400 179.270

(1.293)

Fig. 3. (a) Vapour pressures PT (noting the logarithmic scale for the pressure) and (b) coexisting densities T� phase diagrams for 2-aminoethanol (MEA, red circles and
continuous curves) and 3-amino-1-propanol (MPA, blue squares and dot-dashed curves) used to estimate the dispersion energy as well as the cross association parameters
between the chemical groups CH2NH2 and CH2OH. The symbols correspond to experimental data (2-aminoethanol [133] and 3-amino-1-propanol [145,146]) and the curves
represent our SAFT-� SW calculations. The critical point for 3-amino-1-propanol is from the correlation reported in NIST [133]. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

prediction of the fluid-phase equilibria with the experimental data
for aqueous mixtures of n-hexane [147] and n-octane [149]).

3.3. Aqueous mixtures of alcohols and amines

Transferable parameters to describe the unlike interactions
between H2O and the CH2OH and CH2NH2 groups are obtained
using binary data for mixtures of H2O and n-alcohols or primary
n-alkylamines. Aqueous mixtures of n-alkanols have been previ-
ously studied with SAFT-� SW [82]. However, since the parameters
relevant to the interactions between the CH3 and CH2 chemi-
cal groups and H2O have been revised in our current work, the
parameters describing the interactions between the CH2OH group

Table 4
SAFT-� SW unlike association energy (�HB

klab
/kB)/K for the CH2NH2, CH2OH, H2O, and

CO2 functional groups. The indexes a and b correspond to the different types of
association sites (e, H, ˛1, ˛2). The numbers in parentheses correspond to the unlike
association range rc

klab
/Å. Any parameter not shown takes a value of zero (i.e., �HB

klab
=

0); for like site-site interactions see Table 2.

Association site CH2OH CH2NH2

(e) (H) (e) (H)

CH2OH (e) – 2555.721 – 1696.979
(2.3598) (2.5282)

CH2OH (H) 2555.721 – 903.303 –
(2.3598) (3.9520)

H2O (e) – 1905.280 – 1365.326
(2.4669) (2.3082)

H2O (H) 2122.971 – 1261.968 –
(2.0186) (2.5200)

CO2 (˛1) – – 4175.000 –
(1.9699)

CO2 (˛2) – – 4870.194 –
(1.9790)

and H2O also need to be re-determined. A preliminary effort in
obtaining the pertinent parameters for H2O + n-alkanol systems
was presented earlier [129]. However, the parameters are revised
here to improve the reliability of the description over a wider
temperature range by including experimental data up to 420 K.
The unlike association interactions between H2O and a group l,
with l ∈

{
CH2OH , CH2NH2

}
are assumed to be asymmetric, which

leads to a total of six adjustable parameters for the characteri-
zation of aqueous solutions of n-alkanols and six parameters for
aqueous solutions of primary n-alkylamines, namely the unlike
dispersion energies (�H2O,l), the range of unlike dispersion interac-
tions (�H2O,l) the energy and range of association between sites of
type H of H2O and e of CH2OH or CH2NH2 (�HB

H2O,l,H,e
and rc

H2O,l,H,e
),

and the energy and range of association between sites of type
e of H2O and H of CH2OH or CH2NH2 (�HB

H2O,l,e,H
and rc

H2O,l,e,H
).

The unlike parameters corresponding to the interactions between
the CH2OH group and H2O are estimated using experimental data
relating to binary aqueous mixtures of n-alkanols [151,152] and
those corresponding to the interactions between the CH2NH2 group
and H2O using the corresponding data for binary aqueous mix-
tures of primary n-alkylamines [154–156]. More specifically, the
parameter estimation for aqueous mixtures of n-alkanols is car-
ried out by comparison to experimental vapour-liquid equilibrium
data for ethanol (over a temperature range of T = 350–420 K) and
1-propanol (over a temperature range of T = 360–420 K); that for
aqueous mixtures of n-alkylamines is based on vapour–liquid equi-
librium data for ethylamine, 1-propylamine, and 1-butylamine at
a pressure of P = 105 Pa. The optimal parameters for CH2OH and
CH2NH2 with H2O are reported in Tables 3 and 4. A visual compari-
son of the SAFT-� SW calculations with experimental data as well as
with the description of the modified Dortmund UNIFAC approach
[153] is presented in Fig. 5 for aqueous mixtures of n-alkanols, and
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Fig. 4. (a) Pressure-composition isotherm (at T = 473.15 K) for the vapour–liquid and liquid–liquid equilibrium regions of an aqueous mixture of n-hexane. The symbols
correspond to experimental data [147], and the curves represent the SAFT-� SW calculations. (b) Mutual solubilities of n-alkane in the H2O-rich liquid phase (bottom)
and H2O in the n-alkane-rich liquid phase (top) at conditions of three-phase equilibria for n-heptane (red circles and continuous curves) and n-octane (blue squares and
dot-dashed curves) aqueous mixtures as a function of temperature. The symbols correspond to the correlated experimental data for n-heptane [148] and n-octane [149], and
the curves represent our SAFT-� SW calculations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in Fig. 6 for aqueous mixtures of primary n-alkylamines. The accu-
racy of the representation of the fluid-phase equilibria with the
SAFT-� SW framework is equivalent to that provided by the modi-
fied Dortmund UNIFAC approach for the case of ethanol, although
noticeable deviations can be seen with our approach at higher
temperatures in the case of 1-propanol. For the aqueous mixtures
of the alkylamines considered, however, SAFT-� SW provides an
improved performance. It should be noted that the focus of the
current contribution is on compounds of low molecular weight,
since heavier compounds are in principle of less interest in carbon-
capture processes, due to their significantly higher viscosity.

3.4. Aqueous mixtures of alkanolamines

The group interaction parameters developed up to this point
can be used to predict the fluid-phase behaviour of aqueous mix-
tures of MEA and MPA. Unfortunately, only limited agreement of
the predicted phase behaviour with experimental data for aqueous
MEA [153,158,157] can be achieved using the parameter values pre-
sented in the previous sections (cf. Fig. 7). On the other hand good
agreement with the experimental data for aqueous MPA [157,158]
is found as can be seen in Fig. 8. It should be emphasized here that
these results are fully predictive, having been obtained entirely

Fig. 5. Isobaric temperature-composition and isothermal pressure-composition slices of the vapour–liquid equilibria for aqueous mixtures of (a,b) ethanol and (c,d) 1-
propanol. The symbols correspond to experimental data (ethanol [151] and propanol [152]), the continuous curves represent the SAFT-� SW calculations, and the dashed
curves those obtained using the Dortmund UNIFAC approach [153].
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Fig. 6. Isobaric (at P = 105 Pa) temperature-composition slices of the vapour–liquid
equilibrium for aqueous mixtures of (a) ethylamine, (b) 1-propylamine, and (c) 1-
butylamine. The symbols correspond to experimental data (ethylamine [154], 1-
propylamine [155], and 1-butylamine [156]), the continuous curves represent the
SAFT-� SW calculations, and the dashed curves those obtained with the Dortmund
UNIFAC approach [153].

using group parameters developed based on the data for pure
alkanolamines and selected aqueous mixtures of alkanes, alkanols,
and alkylamines, but no data for H2O + alkanolamine mixtures (cf.
Tables 2, 3, and 4). In the case of aqueous mixtures of MPA, the group
parameters appear to provide a reasonably accurate description of
the fluid-phase behaviour. The difference between MEA and MPA
is that MPA contains an additional CH2 group sandwiched between
the CH2NH2 and the CH2OH chemical groups. The less accurate
description obtained for MEA can thus be partially explained by
the close proximity of the CH2NH2 and CH2OH groups, which can
be expected to lead to mutual polarization of the two moieties.

Fig. 7. (a,b) Isobaric temperature-composition and (c) isothermal pressure-
composition slices of the vapour–liquid equilibria for aqueous mixtures of
2-aminoethanol (MEA). The symbols correspond to experimental data (isobars [157]
and isotherm [158]), the continuous curves represent the SAFT-� SW predictions
using first-order groups, the dashed curves correspond to the SAFT-� SW calcula-
tions using second-order groups, and the dot-dashed curves represent the results
using the modified Dortmund UNIFAC approach[153].

Table 5
SAFT-� SW unlike dispersion energy (�kl/kB)/K for the second-order
CH2NH2[CH2OH] group with H2O and CO2. The numbers in parentheses cor-
respond to the unlike values of the range of the SW potential �kl . The table is
symmetric (i.e., �kl = �lk).

Group CH2NH2[CH2OH]

H2O 444.924
(1.279)

CO2 383.850
(1.293)
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Fig. 8. (a) Isobaric temperature-composition and (b) isothermal pressure-
composition slices of the vapour–liquid equilibria for aqueous mixtures of
3-amino-1-propanol (MPA). The symbols correspond to experimental data (isobar
[157] and isotherm [158]), the continuous curves represent the SAFT-� SW pre-
dictions using first-order groups, the dashed curves correspond to the SAFT-� SW
calculations using second-order groups, and the dot-dashed curves represent the
results using the modified Dortmund UNIFAC approach [153].

Any such polarization would certainly be expected to affect the
interactions of these groups with H2O. In the case of MEA, we
hence re-evaluate the unlike energetic parameters between the
CH2NH2 group and H2O using the experimental data for aqueous
mixtures of MEA, and obtain an excellent description of the exper-
imental data with the estimated parameters (cf. Fig. 7); we refer to
the new parameters as second-order group parameters. For clar-
ity we label the second-order CH2NH2 group as CH2NH2[CH2OH],
where the square brackets indicate that this group should be used
when the CH2NH2 group is covalently bonded to a CH2OH group.

Table 6
SAFT-� SW unlike association energy (�HB

klab
/kB)/K for the second-order

CH2NH2[CH2OH] group with H2O and CO2. The indes a and b correspond to
the different types of association sites (e, H, ˛1, ˛2). The numbers in parentheses
correspond to the unlike association range rc

klab
/Å. Any parameter not shown takes

a value of zero (i.e., �HB
klab

= 0); for like site-site interactions see Table 5.

Association site CH2NH2[CH2OH]

(e) (H)

H2O (e) – 1322.697
(2.3082)

H2O (H) 1542.734 –
(2.5200)

CO2 (˛1) 4875.000 –
(1.9699)

CO2 (˛2) 5175.024 –
(1.9790)

These second-order group parameters provide a representation of
the fluid-phase equilibria that is as good as that obtained with
mixture-specific homonuclear SAFT-VR SW models [78,79]. The
parameters associated with the second-order group are presented
in Tables 5 and 6. All other parameters for this group are the same as
for the first-order CH2NH2 group. In the case of MPA, a second-order
group parameter correction is not required, as can be seen from
Fig. 8. This is consistent with the chemical nature of MPA, where the
presence of the CH2 group between the CH2NH2 and CH2OH groups
reduces the polarization effects. In other words, the second-order
group parameters are designed to capture the behaviour of MEA in
H2O. The purpose of second-order groups is to provide more accu-
rate structural information for compounds where the description
with the first-order groups is insufficient due to proximity effects
leading to a breakdown of the assumption of the transferability of
the parameters [85,87,70,88].

3.5. Mixtures of CO2 with alkanes or alkanols

Having determined all the unlike interaction parameters that
characterize aqueous solutions of alkanolamines, we now develop
the unlike interaction parameters between CO2 and the functional
groups of the alkanolamines, namely CH2, CH2OH, and CH2NH2. As
was the case for H2O, the fact that CO2 is represented at the molec-
ular level means that experimental data for mixtures are required
to estimate the unlike parameters between CO2 and the other func-
tional groups. The unlike interactions between CO2 and the methyl
(CH3) and methanediyl (CH2) functional groups are determined
based on isothermal experimental data for the vapour–liquid equi-
librium of CO2 + n-propane at 293.15 K [160] and CO2 + n-nonane at
298.20 K [161]. The temperatures are chosen to be below the crit-
ical point of CO2 (303.15 K) to avoid any bias due to the expected
over-prediction of the critical point of the fluid-phase behaviour of
the binary mixtures. The performance of SAFT-� SW in the descrip-
tion of the vapour–liquid equilibria of binary mixtures of CO2
with selected alkanes, namely ethane, n-propane, and n-nonane,
is shown in Fig. 9.

The optimal values of the unlike dispersion energies between
the CO2 and the CH3 and CH2 groups are then transferred to the
study of binary mixtures of CO2 with n-alkanols, for the determi-
nation of the unlike interaction parameters between the CO2 and
CH2OH groups. It is assumed that no association occurs between
CO2 and the CH2OH group, and the unlike dispersion energy
�CO2,CH2OH is then estimated from the experimental isothermal
vapour–liquid equilibrium data [162,163] for the binary mixtures
of CO2 with ethanol and 1-propanol at temperatures of T = 293.15 K
and T = 303.15 K (all other unlike parameters are determined by
means of combining rules) [49]. The resulting description of the
experimental data with the SAFT-� SW approach is presented in
Fig. 10, and the values of the optimal parameters are summarized
in Table 3.

3.6. Aqueous mixtures of MEA and CO2

To the best of our knowledge no experimental data are available
for the binary mixtures of CO2 and the alkanolamines considered in
our current work. However, vapour–liquid equilibrium (VLE) data
are available for the ternary aqueous mixtures: MEA + CO2 + H2O
[164,165] and MPA + CO2 + H2O [166]. These data are used to esti-
mate the unlike binary parameters characterizing the interactions
of CO2 with the CH2NH2 and the CH2NH2[CH2OH] groups, since all
other unlike interactions have been previously presented and the
unlike interaction between CO2 and H2O used is the one developed
previously within the framework of the homonuclear SAFT-VR SW
models [78]. Aqueous mixtures of alkanolamines and carbon diox-
ide are known to be reactive, leading to the formation of new
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Fig. 9. Isothermal pressure-composition slices of the vapour–liquid equilibrium of
binary mixtures of n-alkanes and carbon dioxide: (a) ethane, (b) n-propane, and (c)
n-nonane. The symbols correspond to experimental data (ethane [159], n-propane
[160], and n-nonane [161]), and the curves to SAFT-� SW calculations.

species via complex reaction schemes [11,10,12]. It has been shown
[78] that it is possible to treat these reactions and new species
implicitly, through the incorporation of association sites on the
CO2 molecule to mediate the interactions with the amine group
[78,144]. This implicit treatment of the reactions provides a conve-
nient and straightforward method for an early assessment of new
solvents for use in the context of carbon-capture processes, as only a
comparatively small number of parameters (with respect to equiv-
alent chemical approaches) have to be estimated from fluid-phase
equilibrium data for the reactants alone (i.e., MEA, CO2, and H2O in
the current context) to develop the potential models. It should be
noted that, as in previous work [78,79], we do not consider ionic

speciation explicitly, but assume the formation of tight ion pairs by
association of the ionic species into aggregates leading to no net
overall charge.

Following the procedure developed in Ref. [79], the interactions
between the amine group in the MEA molecule and the two accep-
tor sites of the CO2 molecule (labeled ˛1 and ˛2) are not considered
to be identical (i.e., �HB

CH2NH2,CO2,e,˛1
/= �HB

CH2NH2,CO2,e,˛2
), and the

unlike association interaction ranges are also assumed to be differ-
ent (i.e., rc

CH2NH2,CO2,e,˛1
/= rc

CH2NH2,CO2,e,˛2
). Hence, six parameters

need to be determined to describe the MEA + CO2 binary inter-
actions: �CH2NH2,CO2 , �CH2NH2,CO2 , �HB

CH2NH2,CO2,e,˛1
, �HB

CH2NH2,CO2,e,˛2
,

rc
CH2NH2,CO2,e,˛1

, and rc
CH2NH2,CO2,e,˛2

. The model parameters are
estimated through comparison with CO2 solubility data for a 30 wt%
aqueous solution of MEA as a function of partial pressure of CO2 for
a single isotherm at T = 353.15 K [164], using CO2 loadings up to
�CO2 = 0.7. Since our focus is on MEA, where the CH2NH2 group
is bonded directly to the CH2OH group, the model parameters are
those of the second-order group, CH2NH2[CH2OH]; the values of
the unlike interaction parameters are presented in Tables 5 and 6.
MEA has been extensively studied as an amine absorbent for carbon
capture processes for over 60 years, and extensive data are there-
fore available [164,167–172]. Given the broad agreement among
the various data sources, we assess the description for only a few
representative data points. In Fig. 11 the partial pressure of CO2
is plotted as a function of the CO2 loading, which is defined as
the number of moles of CO2 absorbed in the liquid phase per
mole of amine in that phase. Despite the fact that the estimation
of the parameters is based on only one isotherm, the same set
of parameters leads to a good description of the partial pressure
of CO2 for two other isotherms at T = 313.15 K and 393.15 K over
the range of pressures that is most relevant for carbon capture,
up to �CO2 ≈ 0.5 (see Fig. 11). Some deviations are observed for
isotherms at T = 313.15 K and 393.15 K for larger �CO2 values, indi-
cating that temperature-dependent parameters may be required
to achieve higher accuracy but this is beyond the scope of our cur-
rent work [173]. The SAFT-� SW GC models are found to provide
an improvement compared to that obtained with the SAFT-VR
SW homonuclear molecular model developed specifically for this
ternary mixture and also compared to the correlations of Gabrielsen
et al. [174]. We focus on pressure ranges that would be encountered
in carbon capture processes; typically flue gas is at atmospheric
pressure, representing a low partial pressure of CO2, and it is there-
fore preferable for it not to be compressed.

The fraction of molecules (not) bonded at a given site is eval-
uated as part of the determination of the Helmholtz free-energy
in the SAFT approach. This information can be used to predict
the degree of speciation in the mixture [79]. The mole fractions
of the two main species formed, carbamate and bicarbonate, [11]
as a function of CO2 loading are presented for two temperatures
(T = 313.15 and T = 333.15 K) in Fig. 12. The relative proportions of
the species present in the system can be obtained from an analysis
of the fraction of molecules not bonded at the given association sites
[120,117]. As has already been mentioned, we do not consider ionic
speciation explicitly but only the association of the ionic species as
tight ion pairs that have no net overall charge. Two key reactions
are considered:

CO2 + 2 HO(CH2)2NH2 �
[
HO(CH2)2NHCOO− + HO(CH2)2NH3

+ ]
(10)

HO(CH2)2NHCOO− + H3O+ �
[
HO(CH2)2NH3

+ + HCO3
− ] , (11)

where the ion pairs (represented between square brackets) are
assumed to be associated species. The concentration of carbamate
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Fig. 10. Isothermal pressure-composition slices of the vapour–liquid equilibrium of binary mixtures of carbon dioxide with (a) ethanol and (b) 1-propanol. The symbols
correspond to experimental data (ethanol [163] and 1-propanol [162]) and the curves to SAFT-� SW calculations.

(Eq. (10)) can be inferred from the concentration of CO2 molecules
bonded at both sites, while the concentration of bicarbonate (Eq.
(11)) can be obtained from the concentration of CO2 molecules
bonded at only one site. It can be shown that this is equivalent
to the following expressions:

[HO(CH2)2NHCOO−] = xCO2 [(1 − X˛1,CO2 )(1 − X˛2,CO2 )], (12)

and

[HCO−
3 ] = xCO2 [X˛1,CO2 + X˛2,CO2 − 2X˛1,CO2 X˛2,CO2 ], (13)

where xCO2 is the overall mole fraction (concentration) of CO2
in the system, and X˛i,CO2 is the fraction of CO2 molecules not
bonded at site ˛i. These expressions for the concentrations of car-
bamate and bicarbonate (Eq. (12) and Eq. (13)) are an improved
re-interpretation of the expressions reported in a previous study
[79]. It is important to note here that while reaction mechanisms
or products do not need to be postulated a priori, the SAFT-� SW
approach is able to provide an accurate characterization of the
degree of speciation of the mixture being studied. A caveat, how-
ever, in the context of the MEA + CO2 + H2O system, is that our
models do not fully capture the various reaction mechanisms (we

Fig. 11. Solubility of CO2 in a 30 wt% MEA aqueous solution at T = 313.15 K (red
crosses), 333.15 K (blue pluses), and 393.15 K (green asterisks) as a function of the
partial pressure of CO2 at vapour–liquid equilibrium for the ternary mixture of
MEA + H2O + CO2. The solubility is represented as CO2 loading, �CO2 , defined as the
number of moles of CO2 absorbed in the liquid phase per mole of amine in the liquid.
The symbols correspond to the experimental data [164,165,170,172]. The continu-
ous curves correspond to the SAFT-� SW GC calculations, the dotted curves to the
SAFT-VR SW homonuclear calculations [79], and the dashed curve corresponds to a
correlation presented by Gabrielsen et al. [174] at T = 353.15 K. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

focus on the main species formed), so that use of the model far
outside the region where they were developed may not be reliable
(e.g., in the limit of low H2O concentration).

We continue our investigation with the determination of the
unlike interaction parameters between the CO2 and the CH2NH2
group when it is not covalently bonded to a CH2OH group.
We follow the procedure used to obtain the parameters for the
CH2NH2[CH2OH] group, except that now the unlike association
interaction ranges are kept the same as with CH2NH2[CH2OH]
group when it is interacting with CO2. The parameter estimation is
performed with solubility data in a 30 wt% aqueous solution of MPA
as a function of partial pressure of CO2 for two isotherms (T = 313.15
and 393.15 K) [166]. The values of the unlike interaction parame-
ters are presented in Tables 3 and 4. The partial pressure of CO2 is
plotted in Fig. 13 as a function of the CO2 loading, again defined
as the number of moles of CO2 absorbed in the liquid phase per
mole of MPA in the liquid. The overall performance is satisfactory
for the purposes of our current study. Despite the relatively small
number of parameters required, and the fact that they are temper-
ature and pressure independent, the SAFT-� SW models provide
a reliable description of the observed phase behaviour across a

Fig. 12. Predicted mole fraction of carbamate and bicarbonate in the liquid phase
of a 30 wt% MEA aqueous solution at T = 313.15 K (red circles) and 333.15 K (blue
squares) at vapour–liquid equilibrium for the ternary mixture of MEA + H2O + CO2

as a function of the CO2 loading, �CO2 , defined as the number of moles of CO2 absorbed
in the liquid phase per mole of amine in the liquid. The symbols correspond to the
experimental data [164,165] with open symbols corresponding to carbamate and
filled symbols to bicarbonate. The curves correspond to the SAFT-� SW predictions;
continuous curves for 313.15 K and dot-dashed curves for 333.15 K. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 13. Solubility of CO2 in a 30 wt% MPA aqueous solution at T = 313.15 K (red
crosses), and 393.15 K (blue pluses) as a function of the partial pressure of CO2 at
vapour–liquid equilibrium for the ternary mixture of MPA + H2O + CO2. The solubility
is represented as CO2 loading, �CO2 , defined as the number of moles of CO2 absorbed
in the liquid phase per mole of amine in the liquid. The symbols correspond to the
experimental data [166] and the curves correspond to the SAFT-� SW calculations.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

relatively broad range of temperatures and compositions. In the
case of a solvent such as MEA, with such a wealth of data, more
detailed models can of course be developed [15–18]. However, for
solvents like MPA for which little or no data are available, the use
of transferable parameters within a group contribution formalism
opens new avenues. The ability to predict speciation rather than to
be dependent on the availability of such data is also a significant
benefit of our methodology in the context of solvent design.

We conclude this section by investigating the predictive capa-
bilities of our approach. Since the model parameters required
to describe the vapour–liquid equilibria of ternary mixtures
of any primary alkanolamines + H2O + CO2 have been deter-
mined, we can now examine their transferability for longer

Fig. 14. Solubility of CO2 in a 26 wt% aqueous solution of 5-amino-1-pentanol (red
continuous curve and cross) and in a 6 wt% aqueous solution of 6-amino-1-hexanol
(blue dashed curve and plus) at T = 303.15 K as a function of the partial pressure
of CO2 at vapour–liquid equilibrium for the ternary mixture of amine + H2O + CO2.
The corresponding solubility of CO2 in a 18.5 wt% MEA and 11.4 wt% MPA aqueous
solution at T = 313.15 K is also shown (green dot-dashed curve). The solubility is
represented as CO2 loading, �CO2 , defined as the number of moles of CO2 absorbed
in the liquid phase per mole of amine in the liquid. The symbols correspond to the
experimental data [175] and the curves correspond to the SAFT-� SW predictions.

alkanolamines, namely 5-amino-1-pentanol (NH2(CH2)5OH) and
6-amino-1-hexanol (NH2(CH2)6OH). Limited solubility data are
available for the corresponding ternary mixtures comprising these
amines [175]. The partial pressure of CO2 as a function of the CO2
loading for these systems is shown in Fig. 14. We use the first-
order CH2NH2 group and find that the predictive capability of
the SAFT-� SW models for the 5-amino-1-pentanol solutions to
be excellent. The performance is also satisfactory in the case of
6-amino-1-hexanol, albeit less accurate. Overall, our approach is
robust and the description based on the temperature independent
group parameters developed in our current work for primary alka-
nolamines provides a physically consistent and reasonably accurate
representation of mixture properties over a wide range of tem-
peratures, pressures, and compositions. Moreover, the predictive
capabilities of our approach are not limited to ternary systems.
The SAFT-� SW description of an isotherm for the quaternary
H2O + CO2 + MEA + MPA mixture is presented in Fig. 14. All the
group parameters needed to model this four-component mixture
with the implicit treatment of ionic species have been obtained in
previous sections and thus the thermodynamic description is fully
predictive. Thus, by adopting a simplified view of the speciation
chemistry in these complex mixtures, the SAFT-� SW models are
found to provide a useful predictive framework for new solvent
molecules, and new solvent formulations, even in the absence of
experimental data.

4. Conclusions

We have presented the development of a group-contribution
approach to predict the thermodynamic behaviour and fluid-
phase equilibria of mixtures relevant to CO2 capture by chemical
absorption. The approach can be applied even in the absence of
experimental data and provides a useful tool to support the devel-
opment of novel solvents and solvent mixtures. We have focused
on aqueous solutions of primary alkanolamines to establish the
basis of this predictive framework. The pertinent group parame-
ters are estimated from pure-component experimental data where
possible and from binary mixture data in the case of single-group
components such as CO2 and H2O. To account for proximity (polar-
ization) effects in small multifunctional molecules such as MEA,
we have used the concept of second-order groups. The interac-
tions between the CH2NH2 functional group and H2O are thus
represented through two different sets of parameters. The first
set characterizes the CH2NH2–H2O unlike interaction when the
amine group is in close proximity to non-polar groups, such as the
methanediyl CH2 group. The second set captures the change in the
interaction between the CH2NH2 functional group and H2O when
the former group is covalently bonded to CH2OH group (as in the
case of MEA); the hydroxyl group is expected to polarize the amine
group to a certain extent.

A significant challenge in developing group-contribution mod-
els for these mixtures is the presence of chemical reactions. We
have shown how the main reaction products can be represented
implicitly using physical models of association directly within the
SAFT-� SW framework. This greatly simplifies the representation of
the mixtures, because speciation products are not modelled explic-
itly. Despite this assumption, we have shown that the SAFT-� SW
models developed for mixtures of MEA and MPA with H2O and
CO2 can be used to describe the vapour-liquid equilibria over a
wide range of temperatures, and specifically in the range of inter-
est for operation of absorption/desorption processes. Moreover, a
comparison of our predictions with experimental data for the con-
centrations of carbamate and bicarbonate reveals that these models
provide an excellent representation of the speciation observed in
such systems. Overall our models are found to be in very good
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agreement with the available experimental data for the selection of
compounds studied. The findings establish a broad set of chemical
groups that are necessary for the description of the thermody-
namic and phase-equilibrium properties of multifunctional amines
as pure fluids and in aqueous mixtures containing CO2. This pro-
vides a tool to assess novel solvents and solvent mixtures on the
basis of their relative absorption performance, as we have demon-
strated with the SAFT-� SW predictions of the absorption of CO2 in
aqueous mixtures of 5-amino-1-pentanol and 6-amino-1-hexanol.
Our methodology differs from modelling approaches (e.g., eNRTL)
that rely on a detailed knowledge of the reaction chemistry and
speciation: while such approaches provide accurate calculations
for specific solvents and are therefore very appropriate for detailed
process design, they require a large set of experimental data for
model parameterization. Given the need for predictive models to
explore the vast number of possible solvent molecules yet to be syn-
thesized, our work motivates the extension of the group-parameter
table to include secondary and ternary amines, as well as other
chemical functionality.
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