22 research outputs found
Interfacial Tension of Electrolyte Solutions
A theory is presented to account for the increase in surface tension of water
in the presence of electrolyte. Unlike the original ``grand-canonical''
calculation of Onsager and Samaras, which relied on the Gibbs adsorption
isotherm and lead to a result which could only be expressed as an infinite
series, our approach is ``canonical'' and produces an analytic formula for the
excess surface tension. For small concentrations of electrolyte, our result
reduces to the Onsager-Samaras limiting law.Comment: contains two figures. Journal of Chemical Physics, in pres
Electrolytes between dielectric charged surfaces: Simulations and theory
We present a simulation method to study electrolyte solutions in a dielectric
slab geometry using a modified 3D Ewald summation. The method is fast and easy
to implement, allowing us to rapidly resum an infinite series of image charges.
In the weak coupling limit, we also develop a mean-field theory which allows us
to predict the ionic distribution between the dielectric charged plates. The
agreement between both approaches, theoretical and simulational, is very good,
validating both methods. Examples of ionic density profiles in the strong
electrostatic coupling limit are also presented. Finally, we explore the
confinement of charge asymmetric electrolytes between neutral surfaces
Criticality in confined ionic fluids
A theory of a confined two dimensional electrolyte is presented. The positive
and negative ions, interacting by a potential, are constrained to move on
an interface separating two solvents with dielectric constants and
. It is shown that the Debye-H\"uckel type of theory predicts that
the this 2d Coulomb fluid should undergo a phase separation into a coexisting
liquid (high density) and gas (low density) phases. We argue, however, that the
formation of polymer-like chains of alternating positive and negative ions can
prevent this phase transition from taking place.Comment: RevTex, no figures, in press Phys. Rev.