22 research outputs found

    Interfacial Tension of Electrolyte Solutions

    Full text link
    A theory is presented to account for the increase in surface tension of water in the presence of electrolyte. Unlike the original ``grand-canonical'' calculation of Onsager and Samaras, which relied on the Gibbs adsorption isotherm and lead to a result which could only be expressed as an infinite series, our approach is ``canonical'' and produces an analytic formula for the excess surface tension. For small concentrations of electrolyte, our result reduces to the Onsager-Samaras limiting law.Comment: contains two figures. Journal of Chemical Physics, in pres

    Electrolytes between dielectric charged surfaces: Simulations and theory

    Get PDF
    We present a simulation method to study electrolyte solutions in a dielectric slab geometry using a modified 3D Ewald summation. The method is fast and easy to implement, allowing us to rapidly resum an infinite series of image charges. In the weak coupling limit, we also develop a mean-field theory which allows us to predict the ionic distribution between the dielectric charged plates. The agreement between both approaches, theoretical and simulational, is very good, validating both methods. Examples of ionic density profiles in the strong electrostatic coupling limit are also presented. Finally, we explore the confinement of charge asymmetric electrolytes between neutral surfaces

    Criticality in confined ionic fluids

    Full text link
    A theory of a confined two dimensional electrolyte is presented. The positive and negative ions, interacting by a 1/r1/r potential, are constrained to move on an interface separating two solvents with dielectric constants ϵ1\epsilon_1 and ϵ2\epsilon_2. It is shown that the Debye-H\"uckel type of theory predicts that the this 2d Coulomb fluid should undergo a phase separation into a coexisting liquid (high density) and gas (low density) phases. We argue, however, that the formation of polymer-like chains of alternating positive and negative ions can prevent this phase transition from taking place.Comment: RevTex, no figures, in press Phys. Rev.
    corecore