17 research outputs found

    Land Cover and Land Use Change-Driven Dynamics of Soil Organic Carbon in North-East Slovakian Croplands and Grasslands Between 1970 and 2013

    Get PDF
    Soil organic carbon (SOC) in agricultural land forms part of the global terrestrial carbon cycle and it affects atmospheric carbon dioxide balance. SOC is sensitive to local agricultural management practices that sum up into regional SOC storage dynamics. Understanding regional carbon emission and sequestration trends is, therefore, important in formulating and implementing climate change adaptation and mitigation policies. In this study, the estimation of SOC stock and regional storage dynamics in the Ondavská Vrchovina region (North-Eastern Slovakia) cropland and grassland topsoil between 1970 and 2013 was performed with the RothC model and gridded spatial data on weather, initial SOC stock and historical land cover and land use changes. Initial SOC stock in the 0.3-m topsoil layer was estimated at 38.4 t ha−1 in 1970. The 2013 simulated value was 49.2 t ha−1, and the 1993–2013 simulated SOC stock values were within the measured data range. The total SOC storage in the study area, cropland and grassland areas, was 4.21 Mt in 1970 and 5.16 Mt in 2013, and this 0.95 Mt net SOC gain was attributed to interconversions of cropland and grassland areas between 1970 and 2013, which caused different organic carbon inputs to the soil during the simulation period with a strong effect on SOC stock temporal dynamics

    The effect of soil type and ecosystems on the soil nematode and microbial communities

    No full text
    Integrated studies are required to better understand the relationships between groups of soil microfauna under the influence of various biotic and abiotic factors that drive and characterise ecosystems. We analysed soil nematode communities and microbial diversity and the properties of three soil types to assess the effect of these environmental variables on biological diversity in natural (forest), semi-natural (meadow), and managed (agriculture) habitats of the Slovak Republic. The type of ecosystem and soil and the interaction of both factors had considerable effects on most monitored abiotic and biotic soil properties. The forest with a Chernozem soil had the most nematode species, highest nematode diversity, highest abundance of nematode within functional guilds, best values of ecological and functional indices, highest microbial biomass, highest microbial richness and diversity, and the highest values of various soil properties, followed by meadows with a Cambisol soil. The agricultural ecosystem with a Stagnosol soil had the lowest biological diversity and values of the soil properties. Several nematode species were new for Slovak nematode fauna. Sampling date and the interaction of all three factors (ecosystem × soil × date) had minor or no effect on most of the parameters, except soil moisture content, microbial richness, nematode channel ratio, nematode maturity index, and plant parasitic index. Both the biological indicators and basic soil properties indicated that the natural forest with a Chernozem soil was the best habitat from an ecological point of view. This ecosystem is thus the most appropriate for ecological studies

    Enhancing the resilience capacity of SENSitive mountain FORest ecosystems under environmental change (SENSFOR): COST Action ES1203: SENSFOR Deliverable 5

    No full text
    Treeline ecotones in mountains all over the world are dynamic and in many cases changing due to human impact, but there is considerable regional variation. Nevertheless, pressures on the treeline ecotone can be differentiated in abiotic (e.g. wind, fire, drought, avalanche), biotic (e.g. insects, browsing, pathogens) and anthropogenic ones (e.g. pollution, overgrazing, global warming). There is a need for a set of indicators but it is difficult to find indicators for entire ecosystems. Indicators within treeline ecotones can be subdivided into those indicating impact on vegetation, soil or fauna. There can be natural ecosystem responses, not triggered by human impact. One example is the influence of strong winds on the growth form of trees. However, there can be responses of the ecosystem and the related ecosystem services due to human impact. One example is the erosion due to overgrazing. The ecosystem service for decomposition and thus nutrient cycling would be hampered. The connection between pressures and indicators using the Driver, Pressure, State, Impact, Response (DPSIR) framework can be clarified by showing two examples. The first example is focusing on climate change. Precipitation is one DRIVER with heavy rain events putting PRESSURE on ecotones. In case for steep slopes (STATE), the heavy rain would lead to an IMPACT on the stability of the slope. The ecological RESPONSE to this impact would be the instability of the slope with the INDICATOR of a landslide. The anthropogenic RESPONSE may be a technical solution fixing the slope. The second example is focusing on land use change. Grazing is one DRIVER and overgrazing the PRESSURE. In case there are sandy and dry soils covered by plants used as forage for the animals (STATE) the ecological RESPONSE would be erosion. In this case, the INDICATOR would be the area with bare soil. The anthropogenic RESPONSE could be the reduction of the number of grazing animals. Due to the high vulnerability of treeline ecosystems, the ecological resilience is low. When vegetation is damaged due to natural and/or human impact, erosion removes the soil cover including most of the carbon. Above- and belowground biodiversity is getting reduced, leading to reduced ecosystem services such as carbon sequestration or decomposition providing nutrients. Meanwhile, those policy makers who have to deal with climate change have following the topics on the agenda: biodiversity, land degradation and carbon sequestration. Thus, there is a slim chance, that recommendations to preserve carbon stocks, to prevent soil erosion and to protect biodiversity (including belowground biodiversity) will be accepted by policy makers. On the other hand, most of the stakeholders are not open to be convinced this way. Most probably, economic benefits will weigh more than biodiversity issues in ecotones for the future. In this deliverable, we introduce 18 indicators that help practitioners and scientists to understand changes, sustainability issues and resilience of sensitive mountain forest ecosystems. Our aim is to identify a common set of indicators to monitor and analyze changes in treeline biodiversity and to develop monitoring methodology. Findings are based on literature, previous and in-project scientific work of the SENSFOR working groups and experimental work, testing the practicality of preliminary indicators with forest technicians (Ferranti 2015). 3 It is important to understand that especially social indicators listed here might be related to treeline issues. Conflicts can take place at local level while economic and population structure changes may not have any effect on the condition of forest ecosystems. This means that following indicators do not necessarily indicate the sustainability issues linked to treeline ecotones. However, there can be connections and causalities between these variables and in each case, potential linkages need to be tested for: 1. to identify a common set of monitoring indicators to analyze changes in the treeline ecotone which could be used for monitoring; 2. to create a holistic set of indicators for the vulnerability and resilience of coupled socio-ecological systems on the basis of the DPSIR framework analysis. The following Indicators could be used for monitoring changes in the treeline ecotone: 1. Ecological Indicators are related to plants, the soil and the fauna. Usually, trees, their growth form or seedling production, are in the focus but soil indicators like carbon stock or soil biodiversity are considered less but with increasing tendency; 2. Economic Indicators, a valuable economic indicator may be the reduction of the amount of income of the stakeholders, e.g. due to reduced tourism in high mountain areas, triggered by global warming. Also, the distribution of benefits (in most cases income) among stakeholders could be influenced. 3. Social and Cultural Indicators, an important social indicator is the conflict between people who use the land and those people who would like to protect nature and the ecological ecosystem services. The indicators are explained in detail in the following, considering several case studies in different parts of Europe

    A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology

    No full text
    Abstract In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes
    corecore