7,205 research outputs found

    The Development of Global Science.

    Get PDF
    How do we build research capacity throughout the world and capture the great human potential? To us, the answer is rather straightforward: the time-honored tradition of scientific mentoring must be practiced on a wider scale across borders. Herein, we detail the necessity for expanding mentorship to a global scale and provide several important principles to be considered when designing, planning, and implementing programs and centers of research around the world

    Spin Dynamics of Double-Exchange Manganites with Magnetic Frustration

    Full text link
    This work examines the effects of magnetic frustration due to competing ferromagnetic and antiferromagnetic Heisenberg interactions on the spin dynamics of the double-exchange model. When the local moments are non-colinear, a charge-density wave forms because the electrons prefer to sit on lines of sites that are coupled ferromagnetically. With increasing hopping energy, the local spins become aligned and the average spin-wave stiffness increases. Phase separation is found only within a narrow range of hopping energies. Results of this work are applied to the field-induced jump in the spin-wave stiffness observed in the manganite Pr1x_{1-x}Cax_xMnO3_3 with 0.3x0.40.3 \le x \le 0.4.Comment: 10 pages, 3 figure

    A Monte Carlo Method for Fermion Systems Coupled with Classical Degrees of Freedom

    Full text link
    A new Monte Carlo method is proposed for fermion systems interacting with classical degrees of freedom. To obtain a weight for each Monte Carlo sample with a fixed configuration of classical variables, the moment expansion of the density of states by Chebyshev polynomials is applied instead of the direct diagonalization of the fermion Hamiltonian. This reduces a cpu time to scale as O(Ndim2logNdim)O(N_{\rm dim}^{2} \log N_{\rm dim}) compared to O(Ndim3)O(N_{\rm dim}^{3}) for the diagonalization in the conventional technique; NdimN_{\rm dim} is the dimension of the Hamiltonian. Another advantage of this method is that parallel computation with high efficiency is possible. These significantly save total cpu times of Monte Carlo calculations because the calculation of a Monte Carlo weight is the bottleneck part. The method is applied to the double-exchange model as an example. The benchmark results show that it is possible to make a systematic investigation using a system-size scaling even in three dimensions within a realistic cpu timescale.Comment: 6 pages including 4 figure

    A survey of thermodynamic properties of the compounds of the element CHNOPS Progress report, 1 Mar. - 30 Jun. 1968

    Get PDF
    Thermodynamic property data tables for CHNOPS compounds and heats of combustion and formation for organic compounds of biological interes

    Ferromagnetic transition in a double-exchange system containing impurities in the Dynamical Mean Field Approximation

    Full text link
    We formulate the Dynamical Mean Field Approximation equations for the double-exchange system with quenched disorder for arbitrary relation between Hund exchange coupling and electron band width. Close to the ferromagnetic-paramagnetic transition point the DMFA equations can be reduced to the ordinary mean field equation of Curie-Weiss type. We solve the equation to find the transition temperature and present the magnetic phase diagram of the system.Comment: 5 pages, latex, 2 eps figures. We explicitely present the magnetic phase diagram of the syste

    The effects of age and ganglioside composition on the rate of motor nerve terminal regeneration following antibody-mediated injury in mice

    Get PDF
    Gangliosides are glycosphingolipids highly enriched in neural plasma membranes, where they mediate a diverse range of functions and can act as targets for auto-antibodies present in human immune-mediated neuropathy sera. The ensuing autoimmune injury results in axonal and motor nerve terminal (mNT) degeneration. Both aging and ganglioside-deficiency have been linked to impaired axonal regeneration. To assess the effects of age and ganglioside expression on mNT regeneration in an autoimmune injury paradigm, anti-ganglioside antibodies and complement were applied to young adult and aged mice wildtype (WT) mice, mice deficient in either b- and c-series (GD3sKO) or mice deficient in all complex gangliosides (GM2sKO). The extent of mNT injury and regeneration was assessed immediately or after 5 days, respectively. Depending on ganglioside expression and antibody-specificity, either a selective mNT injury or a combined injury of mNTs and neuromuscular glial cells was elicited. Immediately after induction of the injury, between 1.5% and 11.8% of neuromuscular junctions (NMJs) in the young adult groups exhibited healthy mNTs. Five days later, most NMJs, regardless of age and strain, had recovered their mNTs. No significant differences could be observed between young and aged WT and GM2sKO mice; aged GD3sKO showed a mildly impaired rate of mNT regeneration when compared with their younger counterparts. Comparable rates were observed between all strains in the young and the aged mice. In summary, the rate of mNT regeneration following anti-ganglioside antibody and complement-mediated injury does not differ majorly between young adult and aged mice irrespective of the expression of particular gangliosides

    Critical Exponents of the Metal-Insulator Transition in the Two-Dimensional Hubbard Model

    Full text link
    We study the filling-controlled metal-insulator transition in the two-dimensional Hubbard model near half-filling with the use of zero temperature quantum Monte Carlo methods. In the metallic phase, the compressibility behaves as κμμc0.58±0.08\kappa \propto |\mu - \mu_c|^{-0.58\pm0.08} where μc\mu_c is the critical chemical potential. In the insulating phase, the localization length follows ξlμμcνl\xi_l \propto |\mu - \mu_c|^{-\nu_l} with νl=0.26±0.05\nu_l = 0.26 \pm 0.05. Under the assumption of hyperscaling, the compressibility data leads to a correlation length exponent νκ=0.21±0.04\nu_\kappa = 0.21 \pm 0.04. Our results show that the exponents νκ\nu_\kappa and νl\nu_l agree within statistical uncertainty. This confirms the assumption of hyperscaling with correlation length exponent ν=1/4\nu = 1/4 and dynamical exponent z=4z = 4. In contrast the metal-insulator transition in the generic band insulators in all dimensions as well as in the one-dimensional Hubbard model satisfy the hyperscaling assumption with exponents ν=1/2\nu = 1/2 and z=2z = 2.Comment: Two references added. The DVI file and PS figure files are also available at http://www.issp.u-tokyo.ac.jp/labs/riron/imada/furukawa/; to appear in J. Phys. Soc. Jpn 65 (1996) No.

    Phase Diagram and Incommensurate Phases in Undoped Manganites

    Full text link
    We study the existence of incommensurate phases in the phase diagram of the two orbital double exchange model coupled with Jahn-Teller phonons and with superexchange interactions. In agreement with experimental results, we find that undoped manganites RMnO3RMnO_3 (RR being some rare earth element) show temperature induced commensurate-incommensurate phase transitions. In the incommensurate phase the magnetic wave vector varies with temperature. The incommensurate phase arises from the competition between the short range antiferromagnetic superexchange interaction and the long range ferromagnetic double exchange interaction
    corecore