7 research outputs found

    Controlling Viral Immuno-Inflammatory Lesions by Modulating Aryl Hydrocarbon Receptor Signaling

    Get PDF
    Ocular herpes simplex virus infection can cause a blinding CD4+ T cell orchestrated immuno-inflammatory lesion in the cornea called Stromal Keratitis (SK). A key to controlling the severity of SK lesions is to suppress the activity of T cells that orchestrate lesions and enhance the representation of regulatory cells that inhibit effector cell function. In this report we show that a single administration of TCDD (2, 3, 7, 8- Tetrachlorodibenzo-p-dioxin), a non-physiological ligand for the AhR receptor, was an effective means of reducing the severity of SK lesions. It acted by causing apoptosis of Foxp3- CD4+ T cells but had no effect on Foxp3+ CD4+ Tregs. TCDD also decreased the proliferation of Foxp3- CD4+ T cells. The consequence was an increase in the ratio of Tregs to T effectors which likely accounted for the reduced inflammatory responses. In addition, in vitro studies revealed that TCDD addition to anti-CD3/CD28 stimulated naïve CD4+ T cells caused a significant induction of Tregs, but inhibited the differentiation of Th1 and Th17 cells. Since a single TCDD administration given after the disease process had been initiated generated long lasting anti-inflammatory effects, the approach holds promise as a therapeutic means of controlling virus induced inflammatory lesions

    Consequences of TCDD Treatment on Intra-Hepatic Lymphocytes During Liver Regeneration

    No full text
    Increasing evidence demonstrates a physiological role for the aryl hydrocarbon receptor (AhR) in regulating hepatocyte cell cycle progression. Previous studies have used a murine model of liver regeneration to show that exposure to the potent exogenous AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), suppresses hepatocyte proliferation in vivo. Based on recent reports that natural killer (NK) cells negatively regulate liver regeneration, coupled with the well-established immunomodulatory effects of TCDD, it was hypothesized that alterations in lymphocyte activation contribute to the suppression of liver regeneration in TCDD-treated mice. To test this, mice were treated with TCDD (20 μg/kg) 1 day prior to 70% partial hepatectomy (PH), in which two-thirds of the liver was surgically resected. Lymphocytes were collected from the remnant liver and analyzed by flow cytometry. Whereas exposure to TCDD did not alter the number of NK cells or CD3+ T-cells recovered from the regenerating liver, it reduced the percentage and number of intra-hepatic NKT cells 42 h after PH. With regard to lymphocyte activation, TCDD treatment transiently increased CD69 expression on NK and NKT cells 12 h after PH, but had no effect on intracellular levels of IFNγ in NK, NKT, or CD3+ T-cells. To determine the relevance of NK cells to the suppression of liver regeneration by TCDD, mice were treated with anti-Asialo GM-1 (ASGM-1) antibody to deplete NK cells prior to TCDD treatment and PH, and hepatocyte proliferation was measured using bromodeoxyuridine incorporation. Exposure to TCDD was found to inhibit hepatocyte proliferation in the regenerating liver of NK cell-depleted mice and control mice to the same extent. Hence, it is unlikely that enhanced numbers or increased activation of NK cells contribute to the suppression of liver regeneration in TCDD-treated mice

    Annual Selected Bibliography

    No full text
    corecore