45 research outputs found

    Fungal diversity associated to the olive moth, prays oleae Bernard : a survey for potential entomopathogenic fungi

    Get PDF
    Olive production is one of the main agricultural activities in Portugal. In the region of Trás-os-Montes this crop has been considerably affected by Prays oleae. In order to evaluate the diversity of fungi on P. oleae population of Trás-os-Montes olive orchards, larvae and pupae of the three annual generations (phyllophagous, antophagous and carpophagous) were collected and evaluated for fungal growth on their surface. From the 3828 larvae and pupae, a high percentage of individuals exhibited growth of a fungal agent (40.6%), particularly those from the phyllophagous generation. From all the moth generations, a total of 43 species from 24 genera were identified, but the diversity and abundance of fungal species differed between the three generations. Higher diversity was found in the carpophagous generation, followed by the antophagous and phyllophagous generations. The presence of fungi displaying entomopathogenic features was highest in the phyllophagous larvae and pupae, being B. bassiana the most abundant taxa. The first report of B. bassiana presence on P. oleae could open new strategies for the biocontrol of this major pest in olive groves, since the use of an already adapted species increases the guarantee of success of a biocontrol approach. The identification of antagonistic fungi able to control agents that cause major olive diseases, such as Verticillium dahliae, will benefit future biological control approaches for limiting this increasingly spreading pathogen.This work was supported by Science and Technology Foundation (Fundação para a Ciência e Tecnologia – FCT) project PTDC/AGR-AAM/102600/2008 “Entomopathogenic fungi associated to olive pests: isolation, characterization and selection for biological control”. The first author is grateful to the Science and Technology Foundation for the PhD grant SFRH/BD/44265/2008

    A Method for Fast Evaluation of Sharing Set Management Strategies in Cache Coherence Protocols

    No full text
    International audienceWith the emergence of manycore processors with potentially hundreds of processors in the embedded market, the scalability of cache coherence protocols is again at stake. One seemingly simple issue is the management of the set of sharers of a memory block, but with that many processors, it is a major bottleneck in terms of hardware resources. In this paper, we define a high level simulation method to evaluate sharing set management strategies, using memory access traces obtained through cycle accurate simulation (e.g.gem5). The goal of the method is to rank protocols based on latency, traffic and hardware cost, to help either choose an existing approach for a given application context, or evaluate new approaches. We demonstrate the applicability of our proposal by evaluating three existing scalable cache coherence protocols, obtaining results consistent with previous, low level, evaluations much more rapidly

    Trace-driven exploration of sharing set management strategies for cache coherence in manycores

    No full text
    International audienceDoing early design space exploration for manycore architectures is a challenge, all the more when the focus is on complex coherence protocols. Implementing such protocols in realistic simulation models is costly both in modelling effort and execution time. We propose a trace-driven method to accurately compare cache coherence protocols while keeping cache modelling at a high level of abstraction. We show what kind of design space exploration can be performed on an existing sharing set implementation proposal, the linked list sharing set management. By doing so, we demonstrate that our approach, while being still fairly accurate, is much easier to develop and much faster to execute than state of the art low level simulators
    corecore