510 research outputs found

    First direct observation of a torsional Alfvén oscillation at coronal heights

    Get PDF
    Context. Torsional Alfvén waves are promising candidates for the transport of energy across different layers of the solar atmosphere. They have been predicted theoretically for decades. Previous detections of Alfvén waves so far have however mostly relied on indirect signatures. Aims. We present the first direct observational evidence of a fully resolved torsional Alfvén oscillation of a large-scale structure occurring at coronal heights. Methods. We analysed IRIS imaging and spectral observation of a surge resulting from magnetic reconnection between active region prominence threads and surrounding magnetic field lines. Results. The IRIS spectral data provide clear evidence of an oscillation in the line-of-sight velocity with a 180° phase difference between the oscillation signatures at opposite edges of the surge flux tube. This together with an alternating tilt in the Si IV and Mg II k spectra across the flux tube and the trajectories traced by the individual threads of the surge material provide clear evidence of torsional oscillation of the flux tube. Conclusions. Our observation shows that magnetic reconnection leads to the generation of large-scale torsional Alfvén waves

    Ion kinetics of plasma interchange reconnection in the lower solar corona

    Full text link
    The exploration of the inner heliosphere by Parker Solar Probe has revealed a highly structured solar wind with ubiquitous deflections from the Parker spiral, known as switchbacks. Interchange reconnection (IR) may play an important role in generating these switchbacks by forming unstable particle distributions that generate wave activity that in turn may evolve to such structures. IR occurs in very low beta plasmas and in the presence of strong guiding fields. Although IR is unlikely to release enough energy to provide an important contribution to the heating and acceleration of the solar wind, it affects the way the solar wind is connected to its sources, connecting open field lines to regions of closed fields. This "switching on" provides a mechanism by which plasma near coronal hole boundaries can mix with that trapped inside the closed loops. This mixing can lead to a new energy balance. It may significantly change the characteristics of the solar wind because this plasma is already pre-heated and can potentially have quite different density and particle distributions. It not only replenishes the solar wind, but also affects the electric field, which in turn affects the energy balance. This interpenetration is manifested by the formation of a bimodal ion distribution, with a core and a beam-like population. Such distributions are indeed frequently observed by the Parker Solar Probe. Here we provide a first step towards assessing the role of such processes in accelerating and heating the solar wind.Comment: Accepted in Parker Solar Probe Focus Issue (ApJ

    Expanding Duplication of Free Fatty Acid Receptor-2 (GPR43) Genes in the Chicken Genome

    Get PDF
    International audienceFree fatty acid receptors (FFAR) belong to a family of five G-protein coupled receptors that are involved in the regulation of lipidmetabolism, so that their loss of function increases the risk of obesity. The aim of this study was to determine the expansion of genesencoding paralogs of FFAR2 in the chicken, considered as amodel organism for developmental biology and biomedical research. Byestimating the gene copy number using quantitative polymerase chain reaction, genomic DNA resequencing, and RNA sequencingdata, we showed the existence of 23 ±1.5 genes encoding FFAR2 paralogs in the chicken genome. The FFAR2 paralogs shared anidentity from 87.2%up to 99%. Extensive gene conversion was responsible for this high degree of sequence similarities betweenthese genes, and this concerned especially the four amino acids known to be critical for ligand binding. Moreover, elevated nonsynonymous/synonymous substitutionratios onsomeamino acids withinor inclose-vicinity of the ligand-bindinggroove suggest thatpositive selectionmay have reduced the effective rate of gene conversion in this region, thus contributing to diversify the function ofsome FFAR2 paralogs. All the FFAR2 paralogs were located on a microchromosome in a same linkage group. FFAR2 genes wereexpressed in different tissues and cells such as spleen, peripheral blood mononuclear cells, abdominal adipose tissue, intestine, andlung, with the highest rate of expression in testis. Further investigations are needed to determine whether these chicken-specificevents along evolution are the consequence of domestication and may play a role in regulating lipid metabolism in this species

    Effects of natural selection and gene conversion on the evolution of human glycophorins coding for MNS blood polymorphisms in malaria-endemic African populations

    Get PDF
    Malaria has been a very strong selection pressure in recent human evolution, particularly in Africa. Of the one million deaths per year due to malaria, more than 90% are in sub-Saharan Africa, a region with high levels of genetic variation and population substructure. However, there have been few studies of nucleotide variation at genetic loci that are relevant to malaria susceptibility across geographically and genetically diverse ethnic groups in Africa. Invasion of erythrocytes by Plasmodium falciparum parasites is central to the pathology of malaria. Glycophorin A (GYPA) and B (GYPB), which determine MN and Ss blood types, are two major receptors that are expressed on erythrocyte surfaces and interact with parasite ligands. We analyzed nucleotide diversity of the glycophorin gene family in 15 African populations with different levels of malaria exposure. High levels of nucleotide diversity and gene conversion were found at these genes. We observed divergent patterns of genetic variation between these duplicated genes and between different extracellular domains of GYPA. Specifically, we identified fixed adaptive changes at exons 3-4 of GYPA. By contrast, we observed an allele frequency spectrum skewed toward a significant excess of intermediate-frequency alleles at GYPA exon 2 in many populations; the degree of spectrum distortion is correlated with malaria exposure, possibly because of the joint effects of gene conversion and balancing selection. We also identified a haplotype causing three amino acid changes in the extracellular domain of glycophorin B. This haplotype might have evolved adaptively in five populations with high exposure to malaria

    Whistler Wave Observations by \textit{Parker Solar Probe} During Encounter 11: Counter-Propagating Whistlers Collocated with Magnetic Field Inhomogeneities and their Application to Electric Field Measurement Calibration

    Full text link
    Observations of the young solar wind by the Parker Solar Probe (PSP) mission reveal the existence of intense plasma wave bursts with frequencies between 0.050.05 -- 0.20fce0.20 f_\mathrm{ce} (tens of Hz up to ∌300{\sim}300 Hz) in the spacecraft frame. The wave bursts are often collocated with inhomogeneities in the solar wind magnetic field, such as local dips in magnitude or sudden directional changes. The observed waves are identified as electromagnetic whistler waves that propagate either sunward, anti-sunward, or in counter-propagating configurations during different burst events. Being generated in the solar wind flow the waves experience significant Doppler down-shift and up-shift {of wave frequency} in the spacecraft frame for sunward and anti-sunward waves, respectively. Their peak amplitudes can be larger than 22~nT, where such values represent up to 10%10\% of the background magnetic field during the interval of study. The amplitude is maximum for propagation parallel to the background magnetic field. We (i) evaluate the properties of these waves by reconstructing their parameters in the plasma frame, (ii) estimate the effective length of the PSP electric field antennas at whistler frequencies, and (iii) discuss the generation mechanism of these waves
    • 

    corecore