546 research outputs found

    Evaluation of a Seven-Week Web-Based Happiness Training to Improve Psychological Well-Being, Reduce Stress, and Enhance Mindfulness and Flourishing: A Randomized Controlled Occupational Health Study

    Get PDF
    Background:. As distress in society increases, including work environments, individual capacities to compete with stress have to be strengthened. Objective:. We examined the impact of a web-based happiness training on psychological and physiological parameters, by self-report and objective means, in an occupational health setting. Methods:. Randomized controlled trial with 147 employees. Participants were divided into intervention (happiness training) and control groups (waiting list). The intervention consisted of a seven-week online training. Questionnaires were administered before, after, and four weeks after training. The following scales were included: VAS (happiness and satisfaction), WHO-5 Well-being Index, Stress Warning Signals, Freiburg Mindfulness Inventory, Recovery Experience Questionnaire, and Flourishing Scale. Subgroup samples for saliva cortisol and alpha-amylase determinations were taken, indicating stress, and Attention Network Testing for effects on attention regulation. Results:. Happiness (P = 0.000; d = 0.93), satisfaction (P = 0.000; d = 1.17), and quality of life (P = 0.000; d = 1.06) improved; perceived stress was reduced (P = 0.003; d = 0.64); mindfulness (P = 0.006; d = 0.62), flourishing (P = 0.002; d = 0.63), and recovery experience (P = 0.030; d = 0.42) also increased significantly. No significant differences in the Attention Network Tests and saliva results occurred (intergroup), except for one saliva value. Conclusions:. The web-based training can be a useful tool for stabilizing health/psychological well-being and work/life balance

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1)

    First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    Get PDF
    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7  [1/√Hz]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8×10^(−25). At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9×10^(−24). At 55 Hz we can exclude sources with ellipticities greater than 10^(−5) within 100 pc of Earth with fiducial value of the principal moment of inertia of 10^(38)  kg m^2

    All-sky search for periodic gravitational waves in the O1 LIGO data

    Get PDF
    We report on an all-sky search for periodic gravitational waves in the frequency band 20–475 Hz and with a frequency time derivative in the range of [−1.0,+0.1] × 10^(−8) Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO’s first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h_0 are ∼4 × 10^(−25) near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are ∼1.5 × 10^(−25). These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are ~2.5 × 10^(−25)

    Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    Get PDF
    During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100  M⊙, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93  Gpc^(−3) yr^(−1) in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits

    Spanish Validation of the Flourishing Scale in the General Population

    Get PDF
    Well-being research and its measurement have grown in the last two decades. The objective of this study was to adapt and validate the Flourishing Scale in a sample of Spanish adults. This was a cross-sectional study using a non-probabilistic sample of 999 Spanish general adult population participants. The psychometric properties of the scale were analysed from an exploratory and confirmatory perspective. Exploratory factor analysis showed a one-factor solution explaining 42.3% of the variance; an internal consistency of .846; temporal reliability correlation of .749; convergent validity with the Satisfaction with Life Scale of .521 and criterion validity with positive and negative affect (PANAS), pessimism and optimism (LOT-R) ranging from .270 to .488. Confirmatory factor analysis testing the one-factor solution showed a χ2 of 65.57 df = 20; CFI of .982, RMSEA of .06, average variance extracted index of .518 and composite reliability index of .841. Results showed that the Spanish version of the FS is a reliable and valid method for measuring high levels of well-bein
    corecore