518 research outputs found
From particulates toscience of discontinua: generalization of particle simulation methods
In this work, we demonstrate that the rapid developments of methods of discontinua, when coupled with virtual experimentation and complementary discontinua based experimental and theoretical methods, are resulting in a significant paradigm shift from continuum-based analyses to either discontinuum and/or combined continuum discontinumbased approaches. Applications of these new approaches are so diverse (covering topics from traditional mineral processing to applications such as medical research, nano-science, social sciences, astrophysics, etc.) that what started as research on particulate media is rapidly transforming into the science of discontinua. In this paper, this trend is clearly demonstrated through a comparative study of both the fundamental developments in the core simulation technologies (together with synergies between different simulation tools) and their diverse fields of applications
A new Architecture for High Speed, Low Latency NB-LDPC Check Node Processing
International audience—Non-binary low-density parity-check codes have superior communications performance compared to their binary counterparts. However, to be an option for future standards, efficient hardware architectures must be developed. State-of-the-art decoding algorithms lead to architectures suffering from low throughput and high latency. The check node function accounts for the largest part of the decoders overall complexity. In this paper a new hardware aware check node algorithm and its architecture is proposed. It has state-of-the-art communications performance while reducing the decoding complexity. The presented architecture has a 14 times higher area efficiency, increases the energy efficiency by factor 2.5 and reduces the latency by factor of 3.5 compared to a state-of-the-art architecture
Energy-efficient casting processes
Metal casting is one of the most energy-intensive manufacturing processes that have developed along the evolution of mankind. Although nowadays its scientific and technological aspects are well established, in the context of future resource scarcity and environmental pollution pressures, new studies appear necessary to describe the “foundry of the future” where energy and material efficiency are of great importance to guarantee competitiveness alongside environmental protection. In this chapter, both managerial and technical good practices aimed at implementing energy-efficient casting processes are presented alongside a few examples. The “Small is Beautiful” philosophy is presented as a systematic approach towards energy resilient manufacturing and, potentially, sustainability in the long term. Thus, this chapter aims at providing an overview of the different aspects comprising the state of the art in the industry and examples of research themes in academia about energy-efficient casting processes
Length of Stay: An Inappropriate Readout of the Success of Enhanced Recovery Programs
BACKGROUND: Enhanced recovery after surgery (ERAS) programs are designed to reduce hospital length of stay by shortening the postoperative recovery period. The intended effect of an accelerated recovery on the length of stay may be frustrated by a delayed discharge. This study was designed to assess the influence of an ERAS program on the proportion, appropriateness, and extent of delay in discharge. METHODS: Patients who enrolled in the ERAS program (n = 121) between 2003 and 2006 were compared with 52 patients who were managed traditionally in 2001. RESULTS: Ninety percent of the pre-ERAS patients and 87% of the ERAS patients were not discharged on the day that discharge criteria were fulfilled. The additional stay of 59% of the pre-ERAS patients and 69% of the ERAS patients was inappropriate. Wound care (15% in the pre-ERAS and 3% of the ERAS group) and observation of any symptoms pointing to an anastomotic leakage (10% in both groups) were the most important reasons for a medical appropriate delay of discharge. The extent of delay in discharge decreased significantly from a median of two days in the pre-ERAS group to a median of 1 day in the ERAS group (p = 0.004). CONCLUSIONS: Reductions in length of stay up to a median of 2 days after start of an enhanced recovery program may relate to changes in organization of care and not to a shorter recovery period. Recovery statistics should replace or at least be added to the length of stay as outcome of enhanced recovery programs. AD - Department of Surgery, University Hospital Maastricht, PO Box 5800, 6202 AZ, Maastricht, the Netherlands. [email protected]
Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments
Rowena F. Stern is with University of British Columbia, Ales Horak is with University of British Columbia, Rose L. Andrew is with University of British Columbia, Mary-Alice Coffroth is with State University of New York at Buffalo, Robert A. Andersen is with the Bigelow Laboratory for Ocean Sciences, Frithjof C. Küpper is with the Scottish Marine Institute, Ian Jameson is with CSIRO Marine and Atmospheric Research, Mona Hoppenrath is with the German Center for Marine Biodiversity Research, Benoît Véron is with University of Caen Lower Normandy and the National Institute for Environmental Studies, Fumai Kasai is with the National Institute for Environmental Studies, Jerry Brand is with UT Austin, Erick R. James is with University of British Columbia, Patrick J. Keeling is with University of British Columbia.Background -- Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known “species”, as a reference to measure the natural diversity in three marine environments. Methodology/Principal Findings -- In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. Conclusions/Significance -- COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of natural diversity in dinoflagellates. This highlights the extent to which we underestimate microbial diversity in the environment.This project was funded by Genome Canada and the Canadian Barcode of Life Network. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o
Proteomic Insights into the Hidden World of Phloem Sap Feeding
The physical interface between a phloem-feeding insect and its host
plant is a single cell buried deep within the plant tissue. As such, the molecular
interactions between these notorious agricultural pests and the crop plants upon
which they feed are diffi cult to study. ‘Omic’ technologies have proved crucial in
revealing some of the fascinating detail of the molecular interplay between these
partners. Here we review the role of proteomics in identifying putative components
of the secreted saliva of phloem-feeding insects, particularly aphids, and discuss the
limited knowledge concerning the function of these proteins
- …