510 research outputs found

    Postnatal growth, age estimation and development of foraging behaviour in the fulvous fruit bat Rousettus leschenaulti

    Get PDF
    This study documents the postnatal growth, age estimation and development of the foraging behaviour of the fulvous fruit batRousettus leschenaulti under captive conditions. At birth, the young were naked and pink with closed eyes and folded pinnae. By day four of age, their eyes had opened and the pups began to move. The mean length of forearm in 5-day-old pups was 24.9 mm and body mass was 10.8 g, equivalent to 32.3% and 14.2% of the values from postpartum females. The length of forearm and body mass increased linearly until 45 and 50 days, respectively, and thereafter maintained an apparent stability. The epiphyseal gap of the fourth metacarpal-phalangeal joint increased until 15 days, then decreased linearly until 75 days and thereafter closed. Age was estimated quantitatively, based on linear changes observed in the length of the forearm and epiphyseal gap. Pups began to roost separately, but adjacent to their mothers when 30 days old and flew clumsily when they were about 40 days old. After attaining clumsy flight, the young bats made independent foraging attempts feebly by biting and licking small fruit pieces. Young bats were engaged in suckling as well as ingesting fruits when they were about 50 days old. Between 55 and 65 days, they flew well and fed on fruits. At the age of 75 days, the young bats were completely weaned and at two months, their foraging behaviour was similar to that of their mothers. There was no significant difference in the growth pattern of the young maintained in captivity compared with those under natural conditions

    Quantitative Imaging of Protein-Protein Interactions by Multiphoton Fluorescence Lifetime Imaging Microscopy using a Streak camera

    Full text link
    Fluorescence Lifetime Imaging Microscopy (FLIM) using multiphoton excitation techniques is now finding an important place in quantitative imaging of protein-protein interactions and intracellular physiology. We review here the recent developments in multiphoton FLIM methods and also present a description of a novel multiphoton FLIM system using a streak camera that was developed in our laboratory. We provide an example of a typical application of the system in which we measure the fluorescence resonance energy transfer between a donor/acceptor pair of fluorescent proteins within a cellular specimen.Comment: Overview of FLIM techniques, StreakFLIM instrument, FRET application

    APCVD of dual layer transparent conductive oxides for photovoltaic applications

    Get PDF
    We report the atmospheric pressure chemical vapour deposition (APCVD) of a dual layer transparent conductive oxide (TCO). This combines a fluorine doped tin oxide (FTO) base layer with a fluorine doped zinc oxide (FZO) top layer, where we seek to utilise the respective advantages of each material and the differences in their associated industrial deposition process technologies. Deposition of a 250 nm thick FZO layer on FTO was enough to develop features seen with FZO only layers. The crystallographic orientation determined by the FZO dopant concentration. Changes to the deposition parameters of the underlying FTO layer effected stack roughness and carrier concentration, and hence optical scattering and absorption. Photovoltaic cells have been fabricated using this TCO structure showing promising performance, with efficiencies as high as 10.21% compared to reference FTO only values of 9.02%. The bulk of the coating was FTO, providing the majority of conductivity and the large surface features associated with this material, whilst keeping the overall cost low by utilising the very fast growth rates achievable. The FTO was capped with a thinner FZO layer to provide a top surface suitable for wet chemical or plasma etching, allowing the surface morphology to be tuned for specific applications

    Effect of gallium doping on the characteristic properties of polycrystalline cadmium telluride thin film

    Get PDF
    Ga-doped CdTe polycrystalline thin films were successfully electrodeposited on glass/fluorine doped tin oxide (FTO) substrates from aqueous electrolytes containing cadmium nitrate (Cd(NO3)2⸱4H2O) and tellurium oxide (TeO2). The effects of different Ga-doping concentrations on the CdTe:Ga coupled with different post-growth treatments were studied by analysing the structural, optical, morphological and electronic properties of the deposited layers using X-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current conductivity test respectively. XRD results show diminishing (111)C CdTe peak above 20 ppm Ga-doping and appearance of (301)M GaTe diffraction above 50 ppm Ga-doping indicating the formation of two phases; CdTe and GaTe . Although, reductions in the absorption edge slopes were observed above 20 ppm Ga-doping for the as-deposited CdTe:Ga layer, no obvious influence on the energy gap of CdTe films with Ga-doping were detected. Morphologically, reductions in grain size were observed at 50 ppm Ga-doping and above with high pinhole density within the layer. For the as-deposited CdTe:Ga layers, conduction type change from n- to p- were observed at 50 ppm, while the n-type conductivity were retained after post-growth treatment. Highest conductivity was observed at 20 ppm Ga-doping of CdTe. These results are systematically reported in this pape

    Development of a Multiphoton Fluorescence Lifetime Imaging Microscopy (FLIM) system using a Streak Camera

    Full text link
    We report the development and detailed calibration of a multiphoton fluorescence lifetime imaging system (FLIM) using a streak camera. The present system is versatile with high spatial (0.2 micron) and temporal (50 psec) resolution and allows rapid data acquisition and reliable and reproducible lifetime determinations. The system was calibrated with standard fluorescent dyes and the lifetime values obtained were in very good agreement with values reported in literature for these dyes. We also demonstrate the applicability of the system to FLIM studies in cellular specimens including stained pollen grains and fibroblast cells expressing green fluorescent protein. The lifetime values obtained matched well with those reported earlier by other groups for these same specimens. Potential applications of the present system include the measurement of intracellular physiology and Fluorescence Resonance Energy Transfer (FRET) imaging which are discussed in the context of live cell imaging

    The Effect of Fluorine Doping on the Characteristic Behaviour of CdTe

    Get PDF
    Fluorine which is an n-type dopant of cadmium telluride thin films was included during growth from a cadmium nitrate [Cd(NO3)2Æ4H2O] bath using an electrodeposition technique. The fluorine concentration in the Cd(NO3)2Æ4H2O baths were varied between 0.5 ppm and 50 ppm in order to determine its effect on the optical, structural, morphological and electrical properties of the as-deposited and the post-growth-treated layers. These characterisations were carried out using x-ray diffraction, ultraviolet–visible spectrophotometry, scanning electron microscopy, energy dispersive x-rays spectroscopy, photoelectrochemical cell measurement, direct current conductivity measurement and fully fabricated device characterisation. The results are systematically reported in this paper
    • …
    corecore