283 research outputs found

    Modeling house price dynamics with heterogeneous speculators

    Get PDF
    This paper investigates the impact of speculative behavior on house price dynamics. Speculative demand for housing is modeled using a heterogeneous agent approach, whereas ‘real’ demand and housing supply are represented in a standard way. Together, real and speculative forces determine excess demand in each period and house price adjustments. Three alternative models are proposed, capturing in different ways the interplay between fundamental trading rules and extrapolative trading rules, resulting in a 2D, a 3D, and a 4D nonlinear discretetime dynamical system, respectively. While the destabilizing effect of speculative behavior on the model’s steady state is proven in general, the three specific cases illustrate a variety of situations that can bring about endogenous dynamics, with lasting and significant price swings around the ‘fundamental ’ price, as we have seen in many real markets

    Inhibition of PKC activity blocks the increase of ET(B )receptor expression in cerebral arteries

    Get PDF
    BACKGROUND: Previous studies have shown that there is a time-dependent upregulation of contractile endothelin B (ET(B)) receptors in middle cerebral arteries (MCA) after organ culture. This upregulation is dependent on mitogen-activated protein kinases and possibly protein kinase C (PKC). The aim of this study was to examine the effect of PKC inhibitors with different profiles on the upregulation of contractile ET(B )receptors in rat MCA. Artery segments were incubated for 24 hours at 37°C. To investigate involvement of PKC, inhibitors were added to the medium before incubation. The contractile endothelin-mediated responses were measured and real-time PCR was used to detect endothelin receptor mRNA levels. Furthermore, immunohistochemistry was used to demonstrate the ET(B )receptor protein distribution in the MCA and Western blot to measure which of the PKC subtypes that were affected by the inhibitors. RESULTS: The PKC inhibitors bisindolylmaleimide I, Ro-32-0432 and PKC inhibitor 20–28 attenuated the ET(B )receptor mediated contractions. Furthermore, Ro-32-0432 and bisindolylmaleimide I decreased ET(B )receptor mRNA levels while PKC inhibitor 20–28 reduced the amount of receptor protein on smooth muscle cells. PKC inhibitor 20–28 also decreased the protein levels of the five PKC subtypes studied (α, βI, γ, δ and ε). CONCLUSION: The results show that PKC inhibitors are able to decrease the ET(B )receptor contraction and expression in MCA smooth muscle cells following organ culture. The PKC inhibitor 20–28 affects the protein levels, while Ro-32-0432 and bisindolylmaleimide I affect the mRNA levels, suggesting differences in activity profile. Since ET(B )receptor upregulation is seen in cerebral ischemia, the results of the present study provide a way to interfere with the vascular involvement in cerebral ischemia

    LPA Is a Chemorepellent for B16 Melanoma Cells: Action through the cAMP-Elevating LPA5 Receptor

    Get PDF
    Lysophosphatidic acid (LPA), a lipid mediator enriched in serum, stimulates cell migration, proliferation and other functions in many cell types. LPA acts on six known G protein-coupled receptors, termed LPA1–6, showing both overlapping and distinct signaling properties. Here we show that, unexpectedly, LPA and serum almost completely inhibit the transwell migration of B16 melanoma cells, with alkyl-LPA(18∶1) being 10-fold more potent than acyl-LPA(18∶1). The anti-migratory response to LPA is highly polarized and dependent on protein kinase A (PKA) but not Rho kinase activity; it is associated with a rapid increase in intracellular cAMP levels and PIP3 depletion from the plasma membrane. B16 cells express LPA2, LPA5 and LPA6 receptors. We show that LPA-induced chemorepulsion is mediated specifically by the alkyl-LPA-preferring LPA5 receptor (GPR92), which raises intracellular cAMP via a noncanonical pathway. Our results define LPA5 as an anti-migratory receptor and they implicate the cAMP-PKA pathway, along with reduced PIP3 signaling, as an effector of chemorepulsion in B16 melanoma cells

    Diacylglycerol-Stimulated Endocytosis of Transferrin in Trypanosomatids Is Dependent on Tyrosine Kinase Activity

    Get PDF
    Small molecule regulation of cell function is an understudied area of trypanosomatid biology. In Trypanosoma brucei diacylglycerol (DAG) stimulates endocytosis of transferrin (Tf). However, it is not known whether other trypanosomatidae respond similarly to the lipid. Further, the biochemical pathways involved in DAG signaling to the endocytic system in T. brucei are unknown, as the parasite genome does not encode canonical DAG receptors (e.g. C1-domains). We established that DAG stimulates endocytosis of Tf in Leishmania major, and we evaluated possible effector enzymes in the pathway with multiple approaches. First, a heterologously expressed glycosylphosphatidylinositol phospholipase C (GPI-PLC) activated endocytosis of Tf 300% in L. major. Second, exogenous phorbol ester and DAGs promoted Tf endocytosis in L. major. In search of possible effectors of DAG signaling, we discovered a novel C1-like domain (i.e. C1_5) in trypanosomatids, and we identified protein Tyr kinases (PTKs) linked with C1_5 domains in T. brucei, T. cruzi, and L. major. Consequently, we hypothesized that trypanosome PTKs might be effector enzymes for DAG signaling. General uptake of Tf was reduced by inhibitors of either Ser/Thr or Tyr kinases. However, DAG-stimulated endocytosis of Tf was blocked only by an inhibitor of PTKs, in both T. brucei and L. major. We conclude that (i) DAG activates Tf endocytosis in L. major, and that (ii) PTKs are effectors of DAG-stimulated endocytosis of Tf in trypanosomatids. DAG-stimulated endocytosis of Tf may be a T. brucei adaptation to compete effectively with host cells for vertebrate Tf in blood, since DAG does not enhance endocytosis of Tf in human cells

    Heterogeneous Expectations, Boom-Bust Housing Cycles, and Supply Conditions: A Nonlinear Dynamics Approach

    Full text link
    We combine a standard stock-flow housing market model, incorporating explicit relationships between house prices, the housing stock, and the rent level, with a parsimonious expectation formation scheme of housing market investors, reflecting an evolving mix of extrapolative and regressive expectation rules. The model results in a two-dimensional discrete-time nonlinear dynamical system. Based on realistic parameters, the model is able to generate endogenous boom-bust housing market dynamics with lasting periods of overvaluation and overbuilding. We thus exploit our model to investigate how real forces, in particular supply conditions, interact with expectations-driven housing market fluctuations
    • …
    corecore