3,230 research outputs found

    Discrete solitons in coupled active lasing cavities

    Get PDF
    We examine the existence and stability of discrete spatial solitons in coupled nonlinear lasing cavities (waveguide resonators), addressing the case of active defocusing media, where the gain exceeds damping in the low-amplitude limit. A new family of stable localized structures is found: these are bright and grey cavity solitons representing the connections between homogeneous and inhomogeneous states. Solitons of this type can be controlled by the discrete diffraction and are stable when the bistability of homogenous states is absent.Comment: 3 pages, 3 figures, accepted to Optics Letters (October 2012

    Scalar multi-wormholes

    Get PDF
    In 1921 Bach and Weyl derived the method of superposition to construct new axially symmetric vacuum solutions of General Relativity. In this paper we extend the Bach-Weyl approach to non-vacuum configurations with massless scalar fields. Considering a phantom scalar field with the negative kinetic energy, we construct a multi-wormhole solution describing an axially symmetric superposition of NN wormholes. The solution found is static, everywhere regular and has no event horizons. These features drastically tell the multi-wormhole configuration from other axially symmetric vacuum solutions which inevitably contain gravitationally inert singular structures, such as `struts' and `membranes', that keep the two bodies apart making a stable configuration. However, the multi-wormholes are static without any singular struts. Instead, the stationarity of the multi-wormhole configuration is provided by the phantom scalar field with the negative kinetic energy. Anther unusual property is that the multi-wormhole spacetime has a complicated topological structure. Namely, in the spacetime there exist 2N2^N asymptotically flat regions connected by throats.Comment: 11 pages, 13 figure

    Updated constraints on WIMP dark matter annihilation by radio observations of M31

    Full text link
    The present work derived the robust constraints on annihilating WIMP parameters utilizing new radio observations of M31, as well as new studies of its dark matter distribution and other properties. The characteristics of emission due to DM annihilation were computed in the frame of 2D galactic model employing GALPROP code adapted specifically for M31. This enabled us to refine various inaccuracies of previous studies on the subject. DM constraints were obtained for two representative annihilation channels: χχ→bb‾\chi\chi \rightarrow b\overline{b} and χχ→τ+τ−\chi\chi \rightarrow \tau^+\tau^-. A wide variety of radio data was utilized in the frequency range ≈\approx(0.1--10) GHz. As the result the thermal WIMP lighter than fiducially ≈\approx 70 GeV for bb‾b\overline{b} channel and ≈\approx 40 GeV for τ+τ−\tau^+\tau^- was excluded. The corresponding mass threshold uncertainty ranges were estimated to be 20--210 GeV and 18--89 GeV. The obtained exclusions are competitive to those from Fermi-LAT observations of dwarfs and AMS-02 measurements of antiprotons. Our constraints do not exclude the explanation of the gamma-ray outer halo of M31 and the Galactic center excess by annihilating DM. The thermal WIMP with mx≈70m_x \approx 70 GeV, which explains the outer halo, would make a significant contribution to the non-thermal radio flux in M31 nucleus, fitting well both the spectrum and morphology. And, finally, we questioned the possibility claimed in other studies to robustly constrain heavy thermal WIMP with mx>100m_x > 100 GeV by radio data on M31.Comment: 25 pages, 12 figures, 6 tables; accepted for publication in Phys. Rev. D; our DM addition for GALPROP is available at https://github.com/a-e-egorov/GALPROP_D

    Nature of M31 gamma-ray halo in relation to dark matter annihilation

    Full text link
    The present work analyzes various aspects of M31 gamma-ray halo emission in its relation to annihilating dark matter (DM). The main aspect is the predicted effect of asymmetry of the intensity of emission due to inverse Compton scattering (ICS) of a possible population of relativistic electrons and positrons (e±e^\pm) in the galactic halo on starlight photons. This asymmetry is expected to exist around the major galactic axis, and arises due to anisotropy of the interstellar radiation field and the inclination of M31. ICS emission and its asymmetry were modeled by GALPROP code for the trial case of e±e^\pm generated by annihilating weakly interacting massive particles (WIMPs) with various properties. The asymmetry was obtained to appear at photon energies above ∼\sim 0.1 MeV. Morphological and spectral properties of the asymmetry were studied in detail. Potential observational detection of the asymmetry may allow to infer the leptonic fraction in the emission generation mechanism, thus providing valuable inferences for understanding the nature of M31 gamma-ray halo emission. Specific asymmetry predictions were made for the recently claimed DM interpretation of the outer halo emission. The paper also studied the role of secondary -- ICS and bremsstrahlung -- emissions due to DM annihilation for that interpretation. And, finally, the latter was shown to be somewhat restricted by the recently derived WIMP constraints from radio data on M31.Comment: 15 pages, 5 figures, 4 tables. V2 incorporated the referee suggestions, which concerned mainly Sec. IV and Fig. 5. The main results stayed unchanged. The article is dedicated to a kind memory of Nikolay Topchiev and Arkadii Galpe

    Dark matter implications of the WMAP-Planck Haze

    Get PDF
    Gamma rays and microwave observations of the Galactic Center and surrounding areas indicate the presence of anomalous emission, whose origin remains ambiguous. The possibility of dark matter (DM) annihilation explaining both signals through prompt emission at gamma-rays and secondary emission at microwave frequencies from interactions of high-energy electrons produced in annihilation with the Galactic magnetic fields has attracted much interest in recent years. We investigate the DM interpretation of the Galactic Center gamma-ray excess by searching for the associated synchrotron in the WMAP-Planck data. Considering various magnetic field and cosmic-ray propagation models, we predict the synchrotron emission due to DM annihilation in our Galaxy, and compare it with the WMAP-Planck data at 23-70GHz. In addition to standard microwave foregrounds, we separately model the microwave counterpart to the Fermi Bubbles and the signal due to DM, and use component separation techniques to extract the signal associated with each template from the total emission. We confirm the presence of the Haze at the level of 7% of the total sky intensity at 23GHz in our chosen region of interest, with a harder spectrum I∼ν−0.8I \sim \nu^{-0.8} than the synchrotron from regular cosmic-ray electrons. The data do not show a strong preference towards fitting the Haze by either the Bubbles or DM emission only. Inclusion of both components provides a better fit with a DM contribution to the Haze emission of 20% at 23GHz, however, due to significant uncertainties in foreground modeling, we do not consider this a clear detection of a DM signal. We set robust upper limits on the annihilation cross section by ignoring foregrounds, and also report best-fit DM annihilation parameters obtained from a complete template analysis. We conclude that the WMAP-Planck data are consistent with a DM interpretation of the gamma-ray excess.Comment: 34 pages, 9 figure

    Constraints on dark matter annihilation by radio observations of M31

    Get PDF
    We used radio observations of the neighbor galaxy M31 in order to put constraints on the dark matter particle mass and annihilation cross section. Dark matter annihilation in M31 halo produces highly energetic leptons, which emit synchrotron radiation on radio frequencies in the galactic magnetic field. We predicted expected radio fluxes for the two annihilation channels: χχ→bb̅ and χχ→τ^+τ^-. We then compared them with available data on the central radio emission of M31 as observed by four radio surveys: VLSS (74 MHz), WENSS (325 MHz), NVSS (1400 MHz), and GB6 (4850 MHz). Assuming a standard Navarro-Frenk-White dark matter density profile and a conservative magnetic field distribution inside the Andromeda galaxy, we find that the thermal relic annihilation cross section or higher ⟨σv⟩≥3×10^(-26)  cm^3/s are only allowed for weakly interacting massive particle masses greater than ≈100 and ≈55  GeV for annihilation into bb̅ and τ^+τ^-, respectively. Taking into account potential uncertainties in the distributions of dark matter density and the magnetic field, the mentioned weakly interacting massive particle limiting masses can be as low as 23 GeV for both channels, and as high as 280 and 130 GeV for annihilation into bb̅ and τ^+τ^-, respectively. These mass values exceed the best up-to-date known constraints from Fermi gamma observations: 40 and 19 GeV, respectively [A. Geringer-Sameth and S. M. Koushiappas, Phys. Rev. Lett. 107 241303 (2011)]. Precise measurements of the magnetic field in the relevant region and better reconstruction of the dark matter density profile of M31 will be able to reduce the uncertainties of our exclusion limits
    • …
    corecore