793 research outputs found
Radio-X-ray Synergy to discover and Study Jetted Tidal Disruption Events
Observational consequences of tidal disruption of stars (TDEs) by
supermassive black holes (SMBHs) can enable us to discover quiescent SMBHs,
constrain their mass function, study formation and evolution of transient
accretion disks and jet formation. A couple of jetted TDEs have been recently
claimed in hard X-rays, challenging jet models, previously applied to
-ray bursts and active galactic nuclei. It is therefore of paramount
importance to increase the current sample. In this paper, we find that the best
strategy is not to use up-coming X-ray instruments alone, which will yield
between several (e-Rosita) and a couple of hundreds (Einstein Probe) events per
year below redshift one. We rather claim that a more efficient TDE hunter will
be the Square Kilometer Array (SKA) operating {\it in survey mode} at 1.4 GHz.
It may detect up to several hundreds of events per year below with
a peak rate of a few tens per year at . Therefore, even if the
jet production efficiency is {\it not } as assumed here, the predicted
rates should be large enough to allow for statistical studies. The
characteristic TDE decay of , however, is not seen in radio, whose
flux is quite featureless. {\it Identification} therefore requires localization
and prompt repointing by higher energy instruments. If radio candidates would
be repointed within a day by future X-ray observatories (e.g. Athena and
LOFT-like missions), it will be possible to detect up to X-ray
counterparts, almost up to redshift . The shortcome is that only for
redshift below the trigger times will be less than 10 days from
the explosion. In this regard the X-ray surveys are better suited to probe the
beginning of the flare, and are therefore complementary to SKA.Comment: Astrophysical Journal (revised version
LOFT as a discovery machine for jetted Tidal Disruption Events
This is a White Paper in support of the mission concept of the Large
Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We
discuss the potential of LOFT for the study of jetted tidal disruption events.
For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large
Observatory for X-ray Timin
The assembly of massive galaxies from NIR observations of the Hubble Deep Field South
We use a deep K(AB)<25 galaxy sample in the Hubble Deep Field South to trace
the evolution of the cosmological stellar mass density from z~ 0.5 to z~3. We
find clear evidence for a decrease of the average stellar mass density at high
redshift, 2<z<3.2, that is 15^{+25}_{-5}% of the local value, two times higher
than what observed in the Hubble Deep Field North. To take into account for the
selection effects, we define a homogeneous subsample of galaxies with
10^{10}M_\odot \leq M_* \leq 10^{11}M_\odot: in this sample, the mass density
at z>2 is 20^{+20}_{-5} % of the local value. In the mass--limited subsample at
z>2, the fraction of passively fading galaxies is at most 25%, although they
can contribute up to about 40% of the stellar mass density. On the other hand,
star--forming galaxies at z>2 form stars with an average specific rate at least
~4 x10^{-10} yr, 3 times higher than the z<~1 value. This
implies that UV bright star--forming galaxies are substancial contributors to
the rise of the stellar mass density with cosmic time. Although these results
are globally consistent with --CDM scenarios, the present rendition of
semi analytic models fails to match the stellar mass density produced by more
massive galaxies present at z>2.Comment: Accepted for publication on ApJLetter
Non-vascular interventional procedures: effective dose to patient and equivalent dose to abdominal organs by means of dicom images and Monte Carlo simulation
This study evaluates X-ray exposure in patient undergoing abdominal extra-vascular interventional procedures by means of Digital Imaging and COmmunications in Medicine (DICOM) image headers and Monte Carlo simulation. The main aim was to assess the effective and equivalent doses, under the hypothesis of their correlation with the dose area product (DAP) measured during each examination. This allows to collect dosimetric information about each patient and to evaluate associated risks without resorting to in vivo dosimetry. The dose calculation was performed in 79 procedures through the Monte Carlo simulator PCXMC (A PC-based Monte Carlo program for calculating patient doses in medical X-ray examinations), by using the real geometrical and dosimetric irradiation conditions, automatically extracted from DICOM headers. The DAP measurements were also validated by using thermoluminescent dosimeters on an anthropomorphic phantom. The expected linear correlation between effective doses and DAP was confirmed with an R(2) of 0.974. Moreover, in order to easily calculate patient doses, conversion coefficients that relate equivalent doses to measurable quantities, such as DAP, were obtained
The evolution of the galaxy luminosity function in the rest frame blue band up to z=3.5
We present an estimate of the cosmological evolution of the field galaxy
luminosity function (LF) in the rest frame 4400 Angstrom B -band up to redshift
z=3.5. To this purpose, we use a composite sample of 1541 I--selected galaxies
selected down to I_(AB)=27.2 and 138 galaxies selected down to K_(AB)=25 from
ground-based and HST multicolor surveys, most notably the new deep JHK images
in the Hubble Deep Field South (HDF-S) taken with the ISAAC instrument at the
ESO-VLT telescope. About 21% of the sample has spectroscopic redshifts, and the
remaining fraction well calibrated photometric redshifts. The resulting blue LF
shows little density evolution at the faint end with respect to the local
values, while at the bright end (M_B(AB)<-20) a brightening increasing with
redshift is apparent with respect to the local LF. Hierarchical CDM models
overpredict the number of faint galaxies by about a factor 3 at z=1. At the
bright end the predicted LFs are in reasonable agreement only at low and
intermediate redshifts (z=1), but fail to reproduce the pronounced brightening
observed in the high redshift (z=2-3) LF. This brightening could mark the epoch
where a major star formation activity is present in the galaxy evolution.Comment: 14 pages, 2 figures, Astrophysical Journal Letters, in pres
- …