5,936 research outputs found

    Performance Assessment of Different Roof Integrated Photovoltaic Modules under Mediterranean Climate

    Get PDF
    AbstractMany countries, for aesthetic purposes, offer economic advantages (tax deductions, incentives, etc..) for the installation of building integrated photovoltaic modules (BIPV), with water-tightness capability and adequate mechanical resistance in order to substitute tile covering or part of it. Nevertheless, poor or absent ventilation under BIPV panels could cause them to overheat and reduce their efficiency.It is well established that the presence of an air gap between a photovoltaic (PV) module and roof covering facilitates ventilation cooling under the device and consequently reduces cell temperature and improves its performance.In this study, we investigated the thermal performance of PV modules installed in a real scale experimental building over a traditional clay tile pitched roof in Italy for almost one year (from August 2009 to June 2010). One PV module was rack-mounted over the roof covering with a 0.2 m air gap; the others were fully integrated and installed at the same level of the roof covering (one with an air gap of 0.04 m, the other mounted directly in contact with the insulation). Temperature and heat flux measurements for each panel, and environmental parameters were recorded.Experimental results demonstrate that even though the rack-mounted PV module constantly maintains cell temperature below that of the other full-building integrated modules, due to the presence of a higher air gap, the difference in the energy produced by the PV modules estimated for the entire monitoring period is less than 4%

    Photonic circuits for generating modal, spectral, and polarization entanglement

    Get PDF
    We consider the design of photonic circuits that make use of Ti:LiNbO3_{3} diffused channel waveguides for generating photons with various combinations of modal, spectral, and polarization entanglement. Down-converted photon pairs are generated via spontaneous optical parametric down-conversion (SPDC) in a two-mode waveguide. We study a class of photonic circuits comprising: 1) a nonlinear periodically poled two-mode waveguide structure, 2) a set of single-mode and two-mode waveguide-based couplers arranged in such a way that they suitably separate the three photons comprising the SPDC process, and, for some applications, 3) a holographic Bragg grating that acts as a dichroic reflector. The first circuit produces frequency-degenerate down-converted photons, each with even spatial parity, in two separate single-mode waveguides. Changing the parameters of the elements allows this same circuit to produce two nondegenerate down-converted photons that are entangled in frequency or simultaneously entangled in frequency and polarization. The second photonic circuit is designed to produce modal entanglement by distinguishing the photons on the basis of their frequencies. A modified version of this circuit can be used to generate photons that are doubly entangled in mode number and polarization. The third photonic circuit is designed to manage dispersion by converting modal, spectral, and polarization entanglement into path entanglement

    Shedding Light on Diatom Photonics by means of Digital Holography

    Get PDF
    Diatoms are among the dominant phytoplankters in the worl's ocean, and their external silica investments, resembling artificial photonics crystal, are expected to play an active role in light manipulation. Digital holography allowed studying the interaction with light of Coscinodiscus wailesii cell wall reconstructing the light confinement inside the cell cytoplasm, condition that is hardly accessible via standard microscopy. The full characterization of the propagated beam, in terms of quantitative phase and intensity, removed a long-standing ambiguity about the origin of the light. The data were discussed in the light of living cell behavior in response to their environment

    N-acetyl-cysteine, a drug that enhances the endogenous activation of group-II metabotropic glutamate receptors, inhibits nociceptive transmission in humans.

    Get PDF
    Emerging research seeking novel analgesic drugs focuses on agents targeting group-II metabotropic glutamate receptors (mGlu2 and mGlu3 receptors). N-Acetylcysteine (NAC) enhances the endogenous activation of mGlu2/3 receptors by activating the glial glutamate:cystine membrane exchanger. Here, we examined whether NAC inhibits nociceptive responses in humans and animals. We tested the effect of oral NAC (1.2 g) on thermal-pain thresholds and laser-evoked potentials in 10 healthy volunteers, according to a crossover, double-blind, placebo-controlled design, and the effect of NAC (100 mg/kg, i.p.) on the tail-flick response evoked by radiant heat stimulation in mice.In healthy subjects, NAC treatment left thermal-pain thresholds unchanged, but significantly reduced pain ratings to laser stimuli and amplitudes of laser-evoked potentials. NAC induced significantly greater changes in these measures than placebo. In the tail-flick test, NAC strongly reduced the nocifensive reflex response to radiant heat. The action of NAC was abolished by the preferential mGlu2/3 receptor antagonist, LY341495 (1 mg/kg, i.p.).Our findings show for the first time that NAC inhibits nociceptive transmission in humans, and does the same in mice by activating mGlu2/3 receptors. These data lay the groundwork for investigating the therapeutic potential of NAC in patients with chronic pain

    Pharmacological effects of raas blockade in ischemic nephropathy

    Get PDF
    Background: The management of ischemic nephropathy due to atherosclerotic renal artery stenosis has become increasingly conservative in the modern era, with current guidelines recommending optimized medical therapy as the initial step. The doubts raised by the recently published trials of revascularization strategies have led to a renewed focus on pharmacological strategies promoting blood pressure control and renal protection. It is essential to further elucidate the pathophysiological mechanisms underlying hypoperfusion induced renal microvascular dysfunction with subsequent tissue injury and fibrogenesis. The role of renin angiotensin aldosterone system as a mediator of the main pathophysiological consequences of ischemic nephropathy is well known. However, more recent experimental evidence on the adrenergic system and intrarenal tubular feedback mechanisms has stimulated new interest towards a multi-target therapeutic approach. Methods: This review focuses on the pharmacology of the principle therapeutic drug classes currently used in the treatment of atherosclerotic renal artery stenosis with an analysis of their metabolic aspects and use in clinical practice based on evidence from clinical trials. Results and Conclusions: An optimal pharmacologic approach is crucial for a successful prevention of renal injury and cardiovascular events in this high-risk population. Antihypertensive treatment should include renin angiotensin aldosterone system blockade medication not only for their antihypertensive properties, but especially for those cardio and renoprotectiv

    Fast Ultrahigh-Density Writing of Low Conductivity Patterns on Semiconducting Polymers

    Full text link
    The exceptional interest in improving the limitations of data storage, molecular electronics, and optoelectronics has promoted the development of an ever increasing number of techniques used to pattern polymers at micro and nanoscale. Most of them rely on Atomic Force Microscopy to thermally or electrostatically induce mass transport, thereby creating topographic features. Here we show that the mechanical interaction of the tip of the Atomic Force Microscope with the surface of a class of conjugate polymers produces a local increase of molecular disorder, inducing a localized lowering of the semiconductor conductivity, not associated to detectable modifications in the surface topography. This phenomenon allows for the swift production of low conductivity patterns on the polymer surface at an unprecedented speed exceeding 20 μms1\mu m s^{-1}; paths have a resolution in the order of the tip size (20 nm) and are detected by a Conducting-Atomic Force Microscopy tip in the conductivity maps.Comment: 22 pages, 6 figures, published in Nature Communications as Article (8 pages

    Observations and radio tagging of Balaenoptera edeni near Puerto La Cruz, Venezuela

    Get PDF
    The 23 October to 13 November 1979 Venezuelan radio tagging and tracking experiments on whales (Balaenoptera edeni, Fig. 1) provided essential field tests of the new modifications to the WHOI radio whale tag (see list of tag reports), and the chance to try it on a new species. We found that we could approach and tag these whales from a slow (4 to 6 kt) vessel. Good radio tracking with automatic direction finding equipment was possible within 12 to 20 km, with longer ranges probable. In addition, the radio tags provided new information about the behavior of these whales.Prepared for the Office of Naval Research under Contract N00014-79-C-OO71; NR 083-004

    Multi-parameter Entanglement in Quantum Interferometry

    Get PDF
    The role of multi-parameter entanglement in quantum interference from collinear type-II spontaneous parametric down-conversion is explored using a variety of aperture shapes and sizes, in regimes of both ultrafast and continuous-wave pumping. We have developed and experimentally verified a theory of down-conversion which considers a quantum state that can be concurrently entangled in frequency, wavevector, and polarization. In particular, we demonstrate deviations from the familiar triangular interference dip, such as asymmetry and peaking. These findings improve our capacity to control the quantum state produced by spontaneous parametric down-conversion, and should prove useful to those pursuing the many proposed applications of down-converted light.Comment: submitted to Physical Review
    corecore