8,448 research outputs found
Theory of controlled quantum dynamics
We introduce a general formalism, based on the stochastic formulation of
quantum mechanics, to obtain localized quasi-classical wave packets as
dynamically controlled systems, for arbitrary anharmonic potentials. The
control is in general linear, and it amounts to introduce additional quadratic
and linear time-dependent terms to the given potential. In this way one can
construct for general systems either coherent packets moving with constant
dispersion, or dynamically squeezed packets whose spreading remains bounded for
all times. In the standard operatorial framework our scheme corresponds to a
suitable generalization of the displacement and scaling operators that generate
the coherent and squeezed states of the harmonic oscillator.Comment: LaTeX, A4wide, 28 pages, no figures. To appear in J. Phys. A: Math.
Gen., April 199
The solution space of metabolic networks: producibility, robustness and fluctuations
Flux analysis is a class of constraint-based approaches to the study of
biochemical reaction networks: they are based on determining the reaction flux
configurations compatible with given stoichiometric and thermodynamic
constraints. One of its main areas of application is the study of cellular
metabolic networks. We briefly and selectively review the main approaches to
this problem and then, building on recent work, we provide a characterization
of the productive capabilities of the metabolic network of the bacterium E.coli
in a specified growth medium in terms of the producible biochemical species.
While a robust and physiologically meaningful production profile clearly
emerges (including biomass components, biomass products, waste etc.), the
underlying constraints still allow for significant fluctuations even in key
metabolites like ATP and, as a consequence, apparently lay the ground for very
different growth scenarios.Comment: 10 pages, prepared for the Proceedings of the International Workshop
on Statistical-Mechanical Informatics, March 7-10, 2010, Kyoto, Japa
Thermodynamics of rotating self-gravitating systems
We investigate the statistical equilibrium properties of a system of
classical particles interacting via Newtonian gravity, enclosed in a
three-dimensional spherical volume. Within a mean-field approximation, we
derive an equation for the density profiles maximizing the microcanonical
entropy and solve it numerically. At low angular momenta, i.e. for a slowly
rotating system, the well-known gravitational collapse ``transition'' is
recovered. At higher angular momenta, instead, rotational symmetry can
spontaneously break down giving rise to more complex equilibrium
configurations, such as double-clusters (``double stars''). We analyze the
thermodynamics of the system and the stability of the different equilibrium
configurations against rotational symmetry breaking, and provide the global
phase diagram.Comment: 12 pages, 9 figure
Spin-resolved scattering through spin-orbit nanostructures in graphene
We address the problem of spin-resolved scattering through spin-orbit
nanostructures in graphene, i.e., regions of inhomogeneous spin-orbit coupling
on the nanometer scale. We discuss the phenomenon of spin-double refraction and
its consequences on the spin polarization. Specifically, we study the
transmission properties of a single and a double interface between a normal
region and a region with finite spin-orbit coupling, and analyze the
polarization properties of these systems. Moreover, for the case of a single
interface, we determine the spectrum of edge states localized at the boundary
between the two regions and study their properties
Quantitative constraint-based computational model of tumor-to-stroma coupling via lactate shuttle
Cancer cells utilize large amounts of ATP to sustain growth, relying primarily on non-oxidative, fermentative pathways for its production. In many types of cancers this leads, even in the presence of oxygen, to the secretion of carbon equivalents (usually in the form of lactate) in the cell's surroundings, a feature known as the Warburg effect. While the molecular basis of this phenomenon are still to be elucidated, it is clear that the spilling of energy resources contributes to creating a peculiar microenvironment for tumors, possibly characterized by a degree of toxicity. This suggests that mechanisms for recycling the fermentation products (e.g. a lactate shuttle) may be active, effectively inducing a mutually beneficial metabolic coupling between aberrant and non-aberrant cells. Here we analyze this scenario through a large-scale in silico metabolic model of interacting human cells. By going beyond the cell-autonomous description, we show that elementary physico-chemical constraints indeed favor the establishment of such a coupling under very broad conditions. The characterization we obtained by tuning the aberrant cell's demand for ATP, amino-acids and fatty acids and/or the imbalance in nutrient partitioning provides quantitative support to the idea that synergistic multi-cell effects play a central role in cancer sustainment
Rashba spin-orbit coupling and spin precession in carbon nanotubes
The Rashba spin-orbit coupling in carbon nanotubes and its effect on
spin-dependent transport properties are analyzed theoretically. We focus on
clean non-interacting nanotubes with tunable number of subbands . The
peculiar band structure is shown to allow in principle for Datta-Das
oscillatory behavior in the tunneling magnetoresistance as a function of gate
voltage, despite the presence of multiple bands. We discuss the conditions for
observing Datta-Das oscillations in carbon nanotubes.Comment: 12 pages, published versio
Von Neumann's expanding model on random graphs
Within the framework of Von Neumann's expanding model, we study the maximum
growth rate r achievable by an autocatalytic reaction network in which
reactions involve a finite (fixed or fluctuating) number D of reagents. r is
calculated numerically using a variant of the Minover algorithm, and
analytically via the cavity method for disordered systems. As the ratio between
the number of reactions and that of reagents increases the system passes from a
contracting (r1). These results extend the
scenario derived in the fully connected model (D\to\infinity), with the
important difference that, generically, larger growth rates are achievable in
the expanding phase for finite D and in more diluted networks. Moreover, the
range of attainable values of r shrinks as the connectivity increases.Comment: 20 page
- …