573 research outputs found

    Obinutuzumab, a potent anti-B-cell agent, for rituximab-unresponsive IgM anti-MAG neuropathy.

    Get PDF
    Anti-MAG demyelinating neuropathy is difficult to treat. All immunotherapies have failed except for rituximab, a chimeric B-cell–depleting monoclonal antibody against CD20, that helps up to 40% of patients based on 2 controlled and several uncontrolled series.1,–,3 Because the majority of these patients are left disabled, stronger anti–B-cell agents might be promising. We describe clinical response and autoantibody changes after treatment with obinutuzumab (Gazyva), a new generation of humanized anti-CD20 monoclonal antibodies, in 2 patients with anti-MAG neuropathy who continued to worsen despite multiple courses of rituximab. Obinutuzumab, approved for chronic lymphocytic leukemia (CLL), exerts greater peripheral and lymphoid B-cell depletion4 and might be more effective in rituximab-refractory patients. © Rakocevic et al

    Effect of Alemtuzumab (CAMPATH 1-H) in patients with inclusion-body myositis

    Get PDF
    Sporadic inclusion-body myositis (sIBM) is the most common disabling, adult-onset, inflammatory myopathy histologically characterized by intense inflammation and vacuolar degeneration. In spite of T cell-mediated cytotoxicity and persistent, clonally expanded and antigen-driven endomysial T cells, the disease is resistant to immunotherapies. Alemtuzumab is a humanized monoclonal antibody that causes an immediate depletion or severe reduction of peripheral blood lymphocytes, lasting at least 6 months. We designed a proof-of-principle study to examine if one series of Alemtuzumab infusions in sIBM patients depletes not only peripheral blood lymphocytes but also endomysial T cells and alters the natural course of the disease. Thirteen sIBM patients with established 12-month natural history data received 0.3 mg/kg/day Alemtuzumab for 4 days. The study was powered to capture ≥10% increase strength 6 months after treatment. The primary end-point was disease stabilization compared to natural history, assessed by bi-monthly Quantitative Muscle Strength Testing and Medical Research Council strength measurements. Lymphocytes and T cell subsets were monitored concurrently in the blood and the repeated muscle biopsies. Alterations in the mRNA expression of inflammatory, stressor and degeneration-associated molecules were examined in the repeated biopsies. During a 12-month observation period, the patients’ total strength had declined by a mean of 14.9% based on Quantitative Muscle Strength Testing. Six months after therapy, the overall decline was only 1.9% (P < 0.002), corresponding to a 13% differential gain. Among those patients, four improved by a mean of 10% and six reported improved performance of daily activities. The benefit was more evident by the Medical Research Council scales, which demonstrated a decline in the total scores by 13.8% during the observation period but an improvement by 11.4% (P < 0.001) after 6 months, reaching the level of strength recorded 12 months earlier. Depletion of peripheral blood lymphocytes, including the naive and memory CD8+ cells, was noted 2 weeks after treatment and persisted up to 6 months. The effector CD45RA+CD62L­ cells, however, started to increase 2 months after therapy and peaked by the 4th month. Repeated muscle biopsies showed reduction of CD3 lymphocytes by a mean of 50% (P < 0.008), most prominent in the improved patients, and reduced mRNA expression of stressor molecules Fas, Mip-1a and αB-crystallin; the mRNA of desmin, a regeneration-associated molecule, increased. This proof-of-principle study provides insights into the pathogenesis of inclusion-body myositis and concludes that in sIBM one series of Alemtuzumab infusions can slow down disease progression up to 6 months, improve the strength of some patients, and reduce endomysial inflammation and stressor molecules. These encouraging results, the first in sIBM, warrant a future study with repeated infusions (Clinical Trials. Gov NCT00079768)

    Recurrent and founder mutations in the Netherlands: the cardiac phenotype of DES founder mutations p.S13F and p.N342D

    Get PDF
    Background Desmin-related myopathy (DRM) is an autosomally inherited skeletal and cardiac myopathy, mainly caused by dominant mutations in the desmin gene (DES).We describe new families carrying the p.S13F or p.N342D DES mutations, the cardiac phenotype of all carriers, and the founder effects. Methods We collected the clinical details of all carriers of p. S13F or p.N342D. The founder effects were studied using genealogy and haplotype analysis. Results We identified three new index patients carrying the p.S13F mutation and two new families carrying the p.N342D mutation. In total, we summarised the clinical details of 39 p. S13F carriers (eight index patients) and of 21 p.N342D carriers (three index patients). The cardiac phenotype of p.S13F carriers is fully penetrant and severe, characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement. Although muscle weakness is a prominent and presenting symptom in p.N342D carriers, their cardiac phenotype is similar to that of p.S13F carriers. The founder effects of p.S13F and p.N342D were demonstrated by genealogy and haplotype analysis. Conclusion DRM may occur as an apparently isolated cardiological disorder. The cardiac phenotypes of the DES founder mutations p.S13F and p.N342D are characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement

    Reactivity to AQP4 epitopes in relapsing–remitting multiple sclerosis

    Get PDF
    Autoantibodies against the water channel AQP4, expressed predominately in central nervous system astrocytes, are markers and pathogenic factors in Devic's disease. In this study we examined whether Multiple Sclerosis (MS) patients recognize antigenic epitopes on AQP4 that may define distinct disease subsets. We screened sera from 45 patients with relapsing–remitting MS (RRMS) and 13 patients with primary progressive MS (PMS). 23 Neuromyelitis Optica (NMO) patients previously characterized were used as assay positive/negative controls. Sera from 23 patients with Systemic Lupus Erythematosus, 23 with primary Sjogren syndrome without neurological involvement and from 28 healthy individuals were also used as controls. NMO-positive sera exhibited reactivity against the intracellular epitope AQPaa252-275, confirming previous observations. All RRMS sera tested negative for anti-AQP4 antibodies using a cell-based assay, but surprisingly, 13% of them reacted with the epitope AQPaa252-275. PMS, healthy and disease controls showed no specific reactivity. Whether these antibodies define distinct MS subsets and have a pathogenic potential pointing to convergent pathogenetic mechanism with NMO, or are simply markers of astrocytic damage, remains to be determined

    Fine specificity of antibodies against AQP4: Epitope mapping reveals intracellular epitopes

    Get PDF
    The autoantibody to aquaporin-4 (AQP4) is a marker and a pathogenetic factor in Neuromyelitis Optica (NMO) (Devic’s syndrome). Our aim was to identify B-cell antigenic linear epitopes of the AQP4 protein and investigate similarities with other molecules. To this end, we screened sera from 21 patients positive for anti-AQP4 antibodies (study group), from 23 SLE and 23 pSS patients without neurologic involvement (disease controls) and from 28 healthy individuals (normal controls). Eleven peptides, spanning the entire intracellular and extracellular domains of the AQP4 molecule, were synthesized, and all sera were screened for anti-peptide antibodies by ELISA. Specificity was evaluated by homologous inhibition assays. NMO positive sera exhibited reactivity against 3 different peptides spanning the sequences aa1e22 (AQPpep1) (42.9% of patients), aa88e113 (AQPpep4) (33%) and aa252e275 (AQPpep8) (23.8%). All epitopes were localized in the intracellular domains of AQP4. Homologous inhibition rates were ranging from 71.1% to 84.3%. A 73% sequence homology was observed between AQPpep80 aa257e271, a 15-mer peptide part of the AQPpep8 aa252e275, and the aa219e233 domain of the Tax1-HTLV-1 binding protein (TAX1BP1), a host protein associated with replication of the Human T-Lymphotropic Virus 1 (HTLV-1). Antibodies against the AQP4 and the TAX1BP1 15-mer peptides were detected in 26.3% (N ¼ 5) and 31.6% (N ¼ 6) of NMO positive sera (rs ¼ 0.81, P < 0.0001). Healthy controls did not react with these peptides, while homologous and cross-inhibition assays confirmed binding specificity. This first epitope mapping for AQP4 reveals that a significant proportion of anti-AQP4 antibodies target linear epitopes localized in the intracellular domains of the channel. One of the epitopes displays high similarity with a portion of TAX1BP1 protein

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts

    Long-Lived Plasma Cells and Memory B Cells Produce Pathogenic Anti-GAD65 Autoantibodies in Stiff Person Syndrome

    Get PDF
    Stiff person syndrome (SPS) is a rare, neurological disorder characterized by sudden cramps and spasms. High titers of enzyme-inhibiting IgG autoantibodies against the 65 kD isoform of glutamic acid decarboxylase (GAD65) are a hallmark of SPS, implicating an autoimmune component in the pathology of the syndrome. Studying the B cell compartment and the anti-GAD65 B cell response in two monozygotic twins suffering from SPS, who were treated with the B cell-depleting monoclonal anti-CD20 antibody rituximab, we found that the humoral autoimmune response in SPS is composed of a rituximab-sensitive part that is rapidly cleared after treatment, and a rituximab-resistant component, which persists and acts as a reservoir for autoantibodies inhibiting GAD65 enzyme activity. Our data show that these potentially pathogenic anti-GAD65 autoantibodies are secreted by long-lived plasma cells, which may either be persistent or develop from rituximab-resistant memory B lymphocytes. Both subsets represent only a fraction of anti-GAD65 autoantibody secreting cells. Therefore, the identification and targeting of this compartment is a key factor for successful treatment planning of SPS and of similar autoimmune diseases

    Intravenous Immunoglobulin Treatment in Multifocal Motor Neuropathy

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Introduction Multifocal motor neuropathy (MMN) is characterized by asymmetric weakness of limbs and the electrophysiological finding of conduction block in motor nerves. Conduction block is the inability of nerves to propagate action potentials and is probably caused b
    corecore