872 research outputs found

    SB 106 Congressional and state legislative districts; standards and criteria

    Get PDF
    This report examines Senate Bill (SB) 106, introduced during the 2018 Virginia General Assembly session to address the criterion of redistricting and the specific impact on racial and ethnic minorities. This legislation is a direct response to previous legislative attempts to address gerrymandering and remains an evolving issue in the Commonwealth

    Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension

    Get PDF
    Iron–sulfur (Fe‐S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR‐210‐ISCU1/2 axis cause Fe‐S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR‐210 and repression of the miR‐210 targets ISCU1/2 down‐regulated Fe‐S levels. In mouse and human vascular and endothelial tissue affected by PH, miR‐210 was elevated accompanied by decreased ISCU1/2 and Fe‐S integrity. In mice, miR‐210 repressed ISCU1/2 and promoted PH. Mice deficient in miR‐210, via genetic/pharmacologic means or via an endothelial‐specific manner, displayed increased ISCU1/2 and were resistant to Fe‐S‐dependent pathophenotypes and PH. Similar to hypoxia or miR‐210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise‐induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR‐210‐ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe‐S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings.National Institutes of Health (U.S.) (U54‐CA151884)National Institutes of Health (U.S.) (R01‐DE016516‐06)National Institutes of Health (U.S.) (EB000244

    Assimilation of atmospheric infrasound data to constrain tropospheric and stratospheric winds

    Get PDF
    This data assimilation study exploits infrasound from explosions to probe an atmospheric wind component from the ground up to stratospheric altitudes. Planned explosions of old ammunition in Finland generate transient infrasound waves that travel through the atmosphere. These waves are partially reflected back towards the ground from stratospheric levels, and are detected at a receiver station located in northern Norway at 178 km almost due North from the explosion site. The difference between the true horizontal direction towards the source and the backazimuth direction(the horizontal direction of arrival) of the incoming infrasound wave-fronts, in combination with the pulse propagation time, are exploited to provide an estimate of the average cross-wind component in the penetrated atmosphere. We perform offline assimilation experiments with an ensemble Kalman filter and these observations, using the ERA5 ensemble reanalysis atmospheric product as background(prior) for the wind at different vertical levels. We demonstrate that information from both source scan be combined to obtain analysis (posterior) estimates of cross-winds at different vertical levels of the atmospheric slice between the explosion site and the recording station. The assimilation makes greatest impact at the 12−60 km levels, with some changes with respect to the prior of the order of 0.1−1.0 m/s, which is a magnitude larger than the typical standard deviation of the ERA5 background. The reduction of background variance in the higher levels often reached 2−5%. This is the first published study demonstrating techniques to implement assimilation of infrasound data into atmospheric models. It paves the way for further exploration in the use of infrasound observations– especially natural and continuous sources – to probe the middle atmospheric dynamics and to assimilate these data into atmospheric model products

    Alkane-modified short polyethyleneimine for siRNA delivery

    Get PDF
    RNA interference (RNAi) is a highly specific gene-silencing mechanism triggered by small interfering RNA (siRNA). Effective intracellular delivery requires the development of potent siRNA carriers. Here, we describe the synthesis and screening of a series of siRNA delivery materials. Short polyethyleneimine (PEI, Mw 600) was selected as a cationic backbone to which lipid tails were conjugated at various levels of saturation. In solution these polymer–lipid hybrids self-assemble to form nanoparticles capable of complexing siRNA. The complexes silence genes specifically and with low cytotoxicity. The efficiency of gene knockdown increased as the number of lipid tails conjugated to the PEI backbone increased. This is explained by reducing the binding affinity between the siRNA strands to the complex, thereby enabling siRNA release after cellular internalization. These results highlight the importance of complexation strength when designing siRNA delivery materials.Misrock FoundationAmerican Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Institutes of Health (U.S) (Grant EB000244)National Cancer Institute (U.S.) (MIT-Harvard Center of Cancer Nanotechnology Excellence. Grant CA151884)National Science Foundation (U.S.)Massachusetts Institute of Technology (Presidential Fellowships

    Interaction between integrin α5 and PDE4D regulates endothelial inflammatory signalling

    Get PDF
    Atherosclerosis is primarily a disease of lipid metabolism and inflammation; however, it is also closely associated with endothelial extracellular matrix (ECM) remodelling, with fibronectin accumulating in the laminin–collagen basement membrane. To investigate how fibronectin modulates inflammation in arteries, we replaced the cytoplasmic tail of the fibronectin receptor integrin α5 with that of the collagen/laminin receptor integrin α2. This chimaera suppressed inflammatory signalling in endothelial cells on fibronectin and in knock-in mice. Fibronectin promoted inflammation by suppressing anti-inflammatory cAMP. cAMP was activated through endothelial prostacyclin secretion; however, this was ECM-independent. Instead, cells on fibronectin suppressed cAMP via enhanced phosphodiesterase (PDE) activity, through direct binding of integrin α5 to phosphodiesterase-4D5 (PDE4D5), which induced PP2A-dependent dephosphorylation of PDE4D5 on the inhibitory site Ser651. In vivo knockdown of PDE4D5 inhibited inflammation at athero-prone sites. These data elucidate a molecular mechanism linking ECM remodelling and inflammation, thereby identifying a new class of therapeutic targets.United States. National Institutes of Health (5R01HL75092)National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (MR/J007412/1

    CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling

    Get PDF
    CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated Kras[superscript G12D] mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)Damon Runyon Cancer Research Foundation (Fellowship DRG-2117-12)Massachusetts Institute of Technology. Simons Center for the Social Brain (Postdoctoral Fellowship)European Molecular Biology Organization (Fellowship)Foundation for Polish Science (Fellowship)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Science Foundation (U.S.). Graduate Research FellowshipMassachusetts Institute of Technology (Presidential Graduate Fellowship)Human Frontier Science Program (Strasbourg, France) (Postdoctoral Fellowship)National Human Genome Research Institute (U.S.) (CEGS P50 HG006193)Howard Hughes Medical InstituteKlarman Cell ObservatoryNational Cancer Institute (U.S.) (Center of Cancer Nanotechnology Excellence Grant U54CA151884)National Institutes of Health (U.S.) (Controlled Release Grant EB000244)National Heart, Lung, and Blood Institute (Program of Excellence in Nanotechnology (PEN) Award Contract HHSN268201000045C)Massachusetts Institute of Technology (Poitras Gift 1631119)Stanley CenterSimons Foundation (6927482)Nancy Lurie Marks Family Foundation (6928117)United States. Public Health Service (National Institutes of Health (U.S.) R01-CA133404)David H. Koch Institute for Integrative Cancer Research at MIT (Marie D. and Pierre Casimir-Lambert Fund)MIT Skoltech InitiativeNational Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051)National Institute of Mental Health (U.S.) (Director’s Pioneer Award DP1-MH100706)National Institute of Neurological Disorders and Stroke (U.S.) (Transformative R01 Grant R01-NS 07312401)National Science Foundation (U.S.) (Waterman Award)W. M. Keck FoundationKinship Foundation. Searle Scholars ProgramKlingenstein FoundationVallee FoundationMerkin Foundatio

    Adipose tissue pathways involved in weight loss of cancer cachexia

    Get PDF
    White adipose tissue (WAT) constitutes our most expandable tissue and largest endocrine organ secreting hundreds of polypeptides collectively termed adipokines. Changes in WAT mass induce alterations in adipocyte secretion and function, which are linked to disturbed whole-body metabolism. Although the mechanisms controlling this are not clear they are dependent on changes in gene expression, a complex process which is regulated at several levels. Results in recent years have highlighted the role of small non-coding RNA molecules termed microRNAs (miRNAs), which regulate gene expression via post-transcriptional mechanisms. The aim of this thesis was to characterize global gene expression levels and describe novel miRNAs and adipokines controlling the function of human WAT in conditions with pathological increases or decreases in WAT mass. Obesity and cancer cachexia were selected as two models since they are both clinically relevant and characterized by involuntary changes in WAT mass. In Study I, expressional analyses were performed in subcutaneous WAT from cancer patients with or without cachexia and obese versus non-obese subjects. In total, 425 transcripts were found to be regulated in cancer cachexia. Pathway analyses based on this set of genes revealed that processes involving extracellular matrix, actin cytoskeleton and focal adhesion were significantly downregulated, whereas fatty acid metabolism was upregulated comparing cachectic with weight-stable cancer subjects. Furthermore, by overlapping these results with microarray data from an obesity study, many transcripts were found to be reciprocally regulated comparing the two conditions. This suggests that WAT gene expression in cancer cachexia and obesity are regulated by similar, albeit opposing, mechanisms. In Study II, the focus was on the family of fibroblast growth factors (FGFs), members of which have recently been implicated in the development of obesity and insulin resistance. A retrospective analysis of global gene expression data identified several FGFs (FGF1/2/7/9/13/18) to be expressed in WAT. However, only one, FGF1, was actively secreted from WAT and predominantly so from the adipocyte fraction. Moreover, FGF1 release was increased in obese compared to non-obese subjects, but was not normalized by weight loss. Although the clinical significance of these findings is not yet clear, it can be hypothesized that FGF1 may play a role in WAT growth, possibly by promoting fat cell proliferation and/or differentiation. In Study III, we identified adipose miRNAs regulated in obesity. Out of eleven miRNAs regulated by changes in body fat mass, ten controlled the production of the pro-inflammatory chemoattractant chemokine (C-C motif) ligand 2 (CCL2) when overexpressed in fat cells and for two, miR-126 and -193b, signaling circuits were defined. In Study IV, a novel adipokine, semaphorin 3C (SEMA3C), was identified by combining transcriptome and secretome data. Detailed studies focusing on SEMA3C revealed that this factor was secreted from adipocytes and induced the expression of extracellular matrix and matricellular genes in preadipocytes. Furthermore, SEMA3C mRNA levels correlated with interstitial fibrosis and insulin resistance in WAT derived from subjects with a wide range in BMI. In summary, the results presented in this thesis have delineated transcriptional alterations in WAT in two clinically relevant conditions, obesity and cancer cachexia. This has allowed the identification of novel adipokines and microRNAs with potential pathophysiological importance. These findings form the basis for further studies aiming at understanding the central role of WAT in disorders associated with metabolic complications

    Functional and genetic analysis in type 2 diabetes of Liver X receptor alleles – a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liver X receptor alpha <it>(LXRA</it>) and beta (<it>LXRB</it>) regulate glucose and lipid homeostasis in model systems but their importance in human physiology is poorly understood. This project aimed to determine whether common genetic variations in <it>LXRA </it>and <it>LXRB </it>associate with type 2 diabetes (T2D) and quantitative measures of glucose homeostasis, and, if so, reveal the underlying mechanisms.</p> <p>Methods</p> <p>Eight common single nucleotide polymorphisms in <it>LXRA </it>and <it>LXRB </it>were analyzed for association with T2D in one French cohort (N = 988 cases and 941 controls), and for association with quantitative measures reflecting glucose homeostasis in two non-diabetic population-based samples comprising N = 697 and N = 1344 adults. Investigated quantitative phenotypes included fasting plasma glucose, serum insulin, and HOMA<sub>IR </sub>as measure of overall insulin resistance. An oral glucose tolerance test was performed in N = 1344 of adults. The two alleles of the proximal <it>LXRB </it>promoter, differing only at the SNP rs17373080, were cloned into reporter vectors and transiently transfected, whereupon allele-specific luciferase activity was measured. rs17373080 overlapped, according to <it>in silico </it>analysis, with a binding site for Nuclear factor 1 (NF1). Promoter alleles were tested for interaction with NF1 using direct DNA binding and transactivation assays.</p> <p>Results</p> <p>Genotypes at two <it>LXRB </it>promoter SNPs, rs35463555 and rs17373080, associated nominally with T2D (P values 0.047 and 0.026). No <it>LXRA </it>or <it>LXRB </it>SNP associated with quantitative measures reflecting glucose homeostasis. The rs17373080 C allele displayed higher basal transcription activity (P value < 0.05). The DNA-mobility shift assay indicated that oligonucleotides corresponding to either rs17373080 allele bound NF1 transcription factors in whole cell extracts to the same extent. Different NF1 family members showed different capacity to transactivate the <it>LXRB </it>gene promoter, but there was no difference between promoter alleles in NF1 induced transactivation activity.</p> <p>Conclusion</p> <p>Variations in the <it>LXRB </it>gene promoter may be part of the aetiology of T2D. However, the association between <it>LXRB </it>rs35463555 and rs17373080, and T2D are preliminary and needs to be investigated in additional larger cohorts. Common genetic variation in <it>LXRA </it>is unlikely to affect the risk of developing T2D or quantitative phenotypes related to glucose homeostasis.</p

    Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines

    Get PDF
    Background Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles’ physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. Results WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. Conclusion The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs
    corecore