178 research outputs found

    Structure of Native Lens Connexin 46/50 Intercellular Channels by Cryo-EM

    Get PDF
    Gap junctions establish direct pathways for cell-to-cell communication through the assembly of twelve connexin subunits that form intercellular channels connecting neighbouring cells. Co-assembly of different connexin isoforms produces channels with unique properties and enables communication across cell types. Here we used single-particle cryo-electron microscopy to investigate the structural basis of connexin co-assembly in native lens gap junction channels composed of connexin 46 and connexin 50 (Cx46/50). We provide the first comparative analysis to connexin 26 (Cx26), which—together with computational studies—elucidates key energetic features governing gap junction permselectivity. Cx46/50 adopts an open-state conformation that is distinct from the Cx26 crystal structure, yet it appears to be stabilized by a conserved set of hydrophobic anchoring residues. ‘Hot spots’ of genetic mutations linked to hereditary cataract formation map to the core structural–functional elements identified in Cx46/50, suggesting explanations for many of the disease-causing effects

    The generation of phase differences and frequency changes in a network model of inferior olive subthreshold oscillations

    Get PDF
    This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedicationIt is commonly accepted that the Inferior Olive (IO) provides a timing signal to the cerebellum. Stable subthreshold oscillations in the IO can facilitate accurate timing by phase-locking spikes to the peaks of the oscillation. Several theoretical models accounting for the synchronized subthreshold oscillations have been proposed, however, two experimental observations remain an enigma. The first is the observation of frequent alterations in the frequency of the oscillations. The second is the observation of constant phase differences between simultaneously recorded neurons. In order to account for these two observations we constructed a canonical network model based on anatomical and physiological data from the IO. The constructed network is characterized by clustering of neurons with similar conductance densities, and by electrical coupling between neurons. Neurons inside a cluster are densely connected with weak strengths, while neurons belonging to different clusters are sparsely connected with stronger connections. We found that this type of network can robustly display stable subthreshold oscillations. The overall frequency of the network changes with the strength of the inter-cluster connections, and phase differences occur between neurons of different clusters. Moreover, the phase differences provide a mechanistic explanation for the experimentally observed propagating waves of activity in the IO. We conclude that the architecture of the network of electrically coupled neurons in combination with modulation of the inter-cluster coupling strengths can account for the experimentally observed frequency changes and the phase differences.Peer reviewedFinal Published versio

    Inspired or foolhardy: sensemaking, confidence and entrepreneurs' decision-making.

    Get PDF
    The purpose of this paper is to investigate the role of confidence in how both new and experienced entrepreneurs interpret and make sense of their business environment to inform decision-making. We illustrate our conceptual arguments with descriptive results from a large-scale (n = 6289) survey on entrepreneurs' perception of business performance and their decisions taken at a time of uncertainty in an economic downturn. Quantitative findings are stratified along experiential lines to explore heterogeneity in entrepreneurial decision-making and directly inform our conceptual arguments, while qualitative data from open questions are used to explain the role of confidence. Newer entrepreneurs are found to be more optimistic in the face of environmental risk, which impacts on their decision-making and innovative capabilities. However, the more experienced entrepreneurs warily maintain margin and restructure to adapt to environmental changes. Instead of looking directly at the confidence of individuals, we show how confidence impacts sensemaking, and ultimately, decision-making. These insights inform research on the behaviour of novice and experienced entrepreneurs in relation to innovative business activities. Specifically, blanket assumptions on the role of confidence may be misplaced as its impact changes with experience to alter how entrepreneurs make sense of their environment

    Environmental Effects Dominate the Folding of Oligocholates in Solution, Surfactant Micelles, and Lipid Membranes

    Get PDF
    Oligocholate foldamers with different numbers and locations of guanidinium−carboxylate salt bridges were synthesized. The salt bridges were introduced by incorporating arginine and glutamic acid residues into the foldamer sequence. The conformations of these foldamers were studied by fluorescence spectroscopy in homogeneous solution, anionic and nonionic micelles, and lipid bilayers. Environmental effects instead of inherent foldability were found to dominate the folding. As different noncovalent forces become involved in the conformations of the molecules, the best folder in one environment could turn into the worst in another. Preferential solvation was the main driving force for the folding of oligocholates in solution. The molecules behaved very differently in micelles and lipid bilayers, with the most critical factors controlling the folding−unfolding equilibrium being the solvation of ionic groups and the abilities of the surfactants/lipids to compete for the salt bridge. Because of their ability to fold into helices with a nonpolar exterior and a polar interior, the oligocholates could transport large hydrophilic molecules such as carboxyfluorescein across lipid bilayers. Both the conformational properties of the oligocholates and their binding with the guest were important to the transport efficiency.Reprinted (adapted) with permission from Journal of the American Chemical Society 132 (2010): 9890, doi:10.1021/ja103694p. Copyright 2010 American Chemical Society.</p

    DNA polymorphism and selection at the bindin locus in three Strongylocentrotus sp. (Echinoidea)

    Full text link
    corecore