96 research outputs found

    ‘1-8 interferon inducible gene family': putative colon carcinoma-associated antigens

    Get PDF
    Db−/−xβ2 microglobulin (β2m) null mice transgenic for a chimeric HLA-A2.1/Db-β2m single chain (HHD mice) are an effective biological tool to evaluate the antitumour cytotoxic T-lymphocyte response of known major histocompatibility-restricted peptide tumour-associated antigens, and to screen for putative unknown novel peptides. We utilised HHD lymphocytes to identify immunodominant epitopes of colon carcinoma overexpressed genes. We screened with HHD-derived lymphocytes over 500 HLA-A2.1-restricted peptides derived from colon carcinoma overexpressed genes. This procedure culminated in the identification of seven immunogenic peptides, three of these were derived from the ‘human 1-8D gene from interferon inducible gene' (1-8D). The 1-8D gene was shown to be overexpressed in fresh tumour samples. The three 1-8D peptides were both antigenic and immunogenic in the HHD mice. The peptides induce cytotoxic T lymphocytes that were able to kill a colon carcinoma cell line HCT/HHD, in vitro and retard its growth in vivo. One of the peptides shared by all the 1-8 gene family primed efficiently normal human cytotoxic T lymphocyte precursors. These results highlight the 1-8D gene and its homologues as putative immunodominant tumour-associated antigens of colon carcinoma

    When Flexibility Is Stable: Implicit Long-Term Shaping of Olfactory Preferences

    Get PDF
    Preferences are traditionally assumed to be stable. However, empirical evidence such as preference modulation following choices calls this assumption into question. The evolution of such postchoice preference over long time spans, even when choices have been explicitly forgotten, has so far not been studied. In two experiments, we investigated this question by using a variant of the free choice paradigm: In a first session, participants evaluated the pleasantness of a number of odors. We then formed pairs of similarly rated odors, and asked participants to choose their favorite, for each pair. Participants were then presented with all odors again, and asked for another pleasantness rating. In a second session 1 week later, a third pleasantness rating was obtained, and participants were again asked to choose between the same options. Results suggested postchoice preference modulation immediately and 1 week after choice for both chosen and rejected options, even when choices were not explicitly remembered. A third experiment, using another paradigm, confirmed that choice can have a modulatory impact on preferences, and that this modulation can be long-lasting. Taken together, these findings suggest that although preferences appear to be flexible because they are modulated by choices, this modulation also appears to be stable over time and even without explicit recollection of the choice. These results bring a new argument to the idea that postchoice preference modulation could rely on implicit mechanisms, and are consistent with the recent proposal that cognitive dissonance reduction could to some extent be implicit

    Sub-lethal radiation enhances anti-tumor immunotherapy in a transgenic mouse model of pancreatic cancer

    Get PDF
    BACKGROUND: It is not uncommon to observe circulating tumor antigen-specific T lymphocytes in cancer patients despite a lack of significant infiltration and destruction of their tumors. Thus, an important goal for tumor immunotherapy is to identify ways to modulate in vivo anti-tumor immunity to achieve clinical efficacy. We investigate this proposition in a spontaneous mouse tumor model, Rip1-Tag2. METHODS: Experimental therapies were carried out in two distinctive trial designs, intended to either intervene in the explosive growth of small tumors, or regress bulky end-stage tumors. Rip1-Tag2 mice received a single transfer of splenocytes from Tag-specific, CD4(+) T cell receptor transgenic mice, a single sub-lethal radiation, or a combination therapy in which the lymphocyte transfer was preceded by the sub-lethal radiation. Tumor burden, the extent of lymphocyte infiltration into solid tumors and host survival were used to assess the efficacy of these therapeutic approaches. RESULTS: In either intervention or regression, the transfer of Tag-specific T cells alone did not result in significant lymphocyte infiltration into solid tumors, not did it affect tumor growth or host survival. In contrast, the combination therapy resulted in significant reduction in tumor burden, increase in lymphocyte infiltration into solid tumors, and extension of survival. CONCLUSIONS: The results indicate that certain types of solid tumors may be intrinsically resistant to infiltration and destruction by tumor-specific T lymphocytes. Our data suggest that such resistance can be disrupted by sub-lethal radiation. The combinatorial approach presented here merits consideration in the design of clinical trials aimed to achieve T cell-mediated anti-tumor immunity

    Tumor-Shed PGE2 Impairs IL2Rγc-Signaling to Inhibit CD4+ T Cell Survival: Regulation by Theaflavins

    Get PDF
    BACKGROUND:Many tumors are associated with decreased cellular immunity and elevated levels of prostaglandin E2 (PGE2), a known inhibitor of CD4+ T cell activation and inducer of type-2 cytokine bias. However, the role of this immunomodulator in the survival of T helper cells remained unclear. Since CD4+ T cells play critical roles in cell-mediated immunity, detail knowledge of the effect tumor-derived PGE2 might have on CD4+ T cell survival and the underlying mechanism may, therefore, help to overcome the overall immune deviation in cancer. METHODOLOGY/PRINCIPAL FINDINGS:By culturing purified human peripheral CD4+ T cells or Jurkat cells with spent media of theaflavin- or celecoxib-pre-treated MCF-7 cells, we show that tumor-shed PGE2 severely impairs interleukin 2 receptor gammac (IL2Rgammac)-mediated survival signaling in CD4+ T cells. Indeed, tumor-shed PGE2 down-regulates IL2Rgammac expression, reduces phosphorylation as well as activation of Janus kinase 3 (Jak-3)/signal transducer and activator of transcription 5 (Stat-5) and decreases Bcl-2/Bax ratio thereby leading to activation of intrinsic apoptotic pathway. Constitutively active Stat-5A (Stat-5A1 6) over-expression efficiently elevates Bcl-2 levels in CD4+ T cells and protects them from tumor-induced death while dominant-negative Stat-5A over-expression fails to do so, indicating the importance of Stat-5A-signaling in CD4+ T cell survival. Further support towards the involvement of PGE2 comes from the results that (a) purified synthetic PGE2 induces CD4+ T cell apoptosis, and (b) when knocked out by small interfering RNA, cyclooxygenase-2 (Cox-2)-defective tumor cells fail to initiate death. Interestingly, the entire phenomena could be reverted back by theaflavins that restore cytokine-dependent IL2Rgammac/Jak-3/Stat-5A signaling in CD4+ T cells thereby protecting them from tumor-shed PGE2-induced apoptosis. CONCLUSIONS/SIGNIFICANCE:These data strongly suggest that tumor-shed PGE2 is an important factor leading to CD4+ T cell apoptosis during cancer and raise the possibility that theaflavins may have the potential as an effective immunorestorer in cancer-bearer

    A Review of Phosphate Mineral Nucleation in Biology and Geobiology

    Get PDF

    The Odda System: Integration of Conventional Programming and Artificial Intelligence Le système ODDA : intégration de programmation classique et d'intelligence artificielle

    No full text
    The ODDA system (Offshore Directional Drilling Advisor) is an example of how numerical packages, a relational database, graphical interfaces and knowledge bases can be integrated into an industrial application. <br> Le système ODDA (Offshore Directional Drilling Advisor) est un exemple illustrant la façon dont des progiciels numériques, une base de données relationnelle, des interfaces graphiques et des bases de connaissances peuvent être intégrés dans une application industrielle

    Effects of mental stress on insulin-mediated glucose metabolism and energy expenditure in lean and obese women.

    No full text
    The effects of the sympathetic activation elicited by a mental stress on insulin sensitivity and energy expenditure (VO(2)) were studied in 11 lean and 8 obese women during a hyperinsulinemic-euglycemic clamp. Six lean women were restudied under nonselective beta-adrenergic blockade with propranolol to determine the role of beta-adrenoceptors in the metabolic response to mental stress. In lean women, mental stress increased VO(2) by 20%, whole body glucose utilization ([6,6-(2)H(2)]glucose) by 34%, and cardiac index (thoracic bioimpedance) by 25%, whereas systemic vascular resistance decreased by 24%. In obese women, mental stress increased energy expenditure as in lean subjects, but it neither stimulated glucose uptake nor decreased systemic vascular resistance. In the six lean women who were restudied under propranolol, the rise in VO(2), glucose uptake, and cardiac output and the decrease in systemic vascular resistance during mental stress were all abolished. It is concluded that 1) in lean subjects, mental stress stimulates glucose uptake and energy expenditure and produces vasodilation; activation of beta-adrenoceptors is involved in these responses; and 2) in obese patients, the effects of mental stress on glucose uptake and systemic vascular resistance, but not on energy expenditure, are blunted

    Metabolic and respiratory effects of sodium lactate during short i.v. nutrition in critically ill patients.

    No full text
    BACKGROUND: Hyperglycemia and an increased ventilatory demand secondary to an increased CO2 production are frequent undesirable effects of total parenteral nutrition (TPN) in critically ill patients. This study was performed to assess whether sodium lactate as a metabolic substrate may affect these variables. METHODS: Five male patients with multiple trauma during the flow phase were studied during two consecutive 3-hour periods of isocaloric (1.1 x resting energy expenditure) TPN. Sixty-five percent of total calories was provided as carbohydrate, 15% as lipids, and 20% as amino acids during the first period (TPN-glucose), whereas 35% carbohydrate, 30% lactate, 20% lipids, and 15% amino acids (TPN-lactate) were substituted during the second period. Respiratory gas exchanges and net substrate oxidation were assessed by means of indirect calorimetry. Glucose kinetics was determined by primed-constant infusion of U-13C glucose. RESULTS: Compared with TPN-glucose, TPN-lactate decreased glycemia by 20%, insulinemia by 43%, net carbohydrate oxidation (assessed from indirect calorimetry) by 34%, and plasma glucose oxidation (assessed from 13CO2) by 54%. Respiratory oxygen exchange were increased by 3.7% due to a 20% thermic effect of lactate, but respiratory CO2 exchanges did not change. Pao2 decreased by 11.3 mm Hg, indicating that the increased O2 consumption was not matched by an appropriate increase in spontaneous ventilation. Arterial pH increased from 7.41 +/- 0.04 to 7.46 +/- 0.05. CONCLUSION: Sodium lactate as a metabolic substrate limits hyperglycemia but induces metabolic alkalosis and does not spare the ventilatory demand

    Effects of infused sodium lactate on glucose and energy metabolism in healthy humans.

    Full text link
    To assess the effects of lactate on glucose metabolism, sodium lactate (20 mumol.kg-1.min-1) was infused into healthy subjects in basal conditions and during application of a hyperinsulinaemic (6 pmol.kg-1.min-1) euglycaemic clamp. Glucose rate of appearance (GRa) and disappearance (GRd) were measured from plasma dilution of infused U- 13C glucose, and glucose oxidation (G(ox)) from breath 13CO2 and plasma 13C glucose. In basal conditions, lactate infusion did not alter G(ox) (8.8 +/- 0.9 vs 9.2 +/- 1.1 mumol.kg-1.min-1), while GRa slightly decreased from 15.2 +/- 0.8 basal to 13.9 +/- 0.9 mumol.kg-1.min-1 after lactate (p < 0.05). During a hyperinsulinaemic clamp, hepatic glucose production was completely suppressed with or without lactate. Lactate decreased G(ox) from 17.1 +/- 0.4 to 13.4 +/- 1.2 mumol.kg-1.min-1 (p < 0.05), whereas GRd was unchanged (39.7 +/- 3.6 vs 45.6 +/- 2.6 mumol.kg-1.min-1. It is concluded that infusion of lactate in basal conditions does not increase GRa or interfere with peripheral glucose oxidation, and that during hyperinsulinaemia lactate decreases glucose oxidation but does not alter hepatic or peripheral insulin sensitivity
    corecore