5,405 research outputs found

    Effects of omalizumab therapy on allergic rhinitis: a pilot study

    Get PDF
    The use of omalizumab, a humanized monoclonal antibody able to binding Ig-E, is currently authorized only for treatment of severe bronchial asthma. The use of omalizumab in other Ig-E related diseases is off-label, although some studies have provided promising results about it. The aim of this study was to evaluate if therapy with omalizumab in patients affected by asthma and allergic rhinitis has an impact also on allergic rhinitis-related symptoms

    Galaxy Cluster Shapes and Systematic Errors in H0 Measured by the Sunyaev-Zel'dovich Effect

    Get PDF
    Imaging of the Sunyaev-Zel'dovich (SZ) effect in galaxy clusters combined with cluster plasma x-ray diagnostics can measure the cosmic distance scale to high redshift. Projecting the inverse-Compton scattering and x-ray emission along the cluster line-of-sight introduces systematic errors in the Hubble constant, H0, because the true shape of the cluster is not known. I present a study of the systematic errors in the value of H0, as determined by the x-ray and SZ properties of theoretical samples of triaxial isothermal ``beta'' model clusters, caused by projection effects and observer orientation. I calculate estimates for H0 for each cluster based on their large and small apparent angular core radii and their arithmetic mean. I demonstrate that the estimates for H0 for a sample of 25 clusters have 99.7% confidence intervals for the mean estimated H0 analyzing the clusters using either their large or mean angular core radius are within 14% of the ``true'' (assumed) value of H0 (and enclose it), for a triaxial beta model cluster sample possessing a distribution of apparent x-ray cluster ellipticities consistent with that of observed x-ray clusters. This limit on the systematic error in H0 caused by cluster shape assumes that each sample beta model cluster has fixed shape; deviations from constant shape within the clusters may introduce additional uncertainty or bias into this result.Comment: Accepted for publication in the Astrophysical Journal, 24 March 1998; 4 pages, 2 figure

    Evidence of diffusive fractal aggregation of TiO2 nanoparticles by femtosecond laser ablation at ambient conditions

    Full text link
    The specific mechanisms which leads to the formation of fractal nanostructures by pulsed laser deposition remain elusive despite intense research efforts, motivated mainly by the technological interest in obtaining tailored nanostructures with simple and scalable production methods. Here we focus on fractal nanostructures of titanium dioxide, TiO2TiO_2, a strategic material for many applications, obtained by femtosecond laser ablation at ambient conditions. We model the fractal formation through extensive Monte Carlo simulations based on a set of minimal assumptions: irreversible sticking and size independent diffusion. Our model is able to reproduce the fractal dimensions and the area distributions of the nanostructures obtained in the experiments for different densities of the ablated material. The comparison of theory and experiment show that such fractal aggregates are formed after landing of the ablated material on the substrate surface by a diffusive mechanism. Finally we discuss the role of the thermal conductivity of the substrate and the laser fluence on the properties of the fractal nanostructures. Our results represent an advancement towards controlling the production of fractal nanostructures by pulsed laser deposition.Comment: 21 page

    X-raying the Star Formation History of the Universe

    Get PDF
    The current models of early star and galaxy formation are based upon the hierarchical growth of dark matter halos, within which the baryons condense into stars after cooling down from a hot diffuse phase. The latter is replenished by infall of outer gas into the halo potential wells; this includes a fraction previously expelled and preheated, due to momentum and energy fed back by the SNe which follow the star formation. We identify such an implied hot phase with the medium known to radiate powerful X-rays in clusters and in groups of galaxies. We show that the amount of the hot component required by the current star formation models is enough to be observable out to redshifts z≈1.5z \approx 1.5 in forthcoming deep surveys from {\it Chandra} and {\it XMM}, especially in case the star formation rate is high at such and earlier zz. These X-ray emissions constitute a necessary counterpart, and will provide a much wanted probe of the SF process itself (in particular, of the SN feedback), to parallel and complement the currently debated data from optical and IR observations of the young stars.Comment: 13 pages, 2 figures, accepted for publicatin in ApJ

    Markov Chain Monte Carlo joint analysis of Chandra X-ray imaging spectroscopy and Sunyaev-Zeldovich Effect data

    Full text link
    X-ray and Sunyaev-Zeldovich Effect data can be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from the Chandra Observatory, which provides both spatial and spectral information, and Sunyaev-Zeldovich Effect data were obtained from the BIMA and OVRO arrays. We introduce a Markov chain Monte Carlo procedure for the joint analysis of X-ray and Sunyaev-Zeldovich Effect data. The advantages of this method are the high computational efficiency and the ability to measure simultaneously the probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and also for derivative quantities such as the distance to the cluster. We demonstrate this technique by applying it to the Chandra X-ray data and the OVRO radio data for the galaxy cluster Abell 611. Comparisons with traditional likelihood-ratio methods reveal the robustness of the method. This method will be used in follow-up papers to determine the distances to a large sample of galaxy clusters.Comment: ApJ accepted, scheduled for ApJ 10 October 2004, v614 issue. Title changed, added more convergence diagnostic tests, Figure 7 converted to lower resolution for easier download, other minor change

    Mechanical response of 2024-7075 aluminium alloys joined by Friction Stir Welding

    Get PDF
    none3Codice Scopus: 2-s2.0-23744450678P. Cavaliere;E. Cerri;A. SquillaceCavaliere, Pasquale Daniele; E., Cerri; A., Squillac

    A Deep Chandra Observation of the Distant Galaxy Cluster MS1137.5+6625

    Full text link
    We present results from a deep Chandra observation of MS1137.5+66, a distant (z=0.783) and massive cluster of galaxies. Only a few similarly massive clusters are currently known at such high redshifts; accordingly, this observation provides much-needed information on the dynamical state of these rare systems. The cluster appears both regular and symmetric in the X-ray image. However, our analysis of the spectral and spatial X-ray data in conjunction with interferometric Sunyaev-Zel'dovich effect data and published deep optical imaging suggests the cluster has a fairly complex structure. The angular diameter distance we calculate from the Chandra and Sunyaev-Zel'dovich effect data assuming an isothermal, spherically symmetric cluster implies a low value for the Hubble constant for which we explore possible explanations.Comment: 16 pages, 6 figures, submitted to Ap
    • 

    corecore