7,611 research outputs found

    Roadmap on the theoretical work of BinaMIcS

    Full text link
    We review the different theoretical challenges concerning magnetism in interacting binary or multiple stars that will be studied in the BinaMIcS (Binarity and Magnetic Interactions in various classes of Stars) project during the corresponding spectropolarimetric Large Programs at CFHT and TBL. We describe how completely new and innovative topics will be studied with BinaMIcS such as the complex interactions between tidal flows and stellar magnetic fields, the MHD star-star interactions, and the role of stellar magnetism in stellar formation and vice versa. This will strongly modify our vision of the evolution of interacting binary and multiple stars.Comment: 2 pages, proceeding of IAUS 302 Magnetic fields throughout stellar evolution, correct list of author

    Orbital parameters, chemical composition, and magnetic field of the Ap binary HD 98088

    Full text link
    HD 98088 is a synchronised, double-lined spectroscopic binary system with a magnetic Ap primary component and an Am secondary component. We study this rare system using high-resolution MuSiCoS spectropolarimetric data, to gain insight into the effect of binarity on the origin of stellar magnetism and the formation of chemical peculiarities in A-type stars. Using a new collection of 29 high-resolution Stokes VQU spectra we re-derive the orbital and stellar physical parameters and conduct the first disentangling of spectroscopic observations of the system to conduct spectral analysis of the individual stellar components. From this analysis we determine the projected rotational velocities of the stars and conduct a detailed chemical abundance analysis of each component using both the SYNTH3 and ZEEMAN spectrum synthesis codes. The surface abundances of the primary component are typical of a cool Ap star, while those of the secondary component are typical of an Am star. We present the first magnetic analysis of both components using modern data. Using Least-Squares Deconvolution, we extract the longitudinal magnetic field strength of the primary component, which is observed to vary between +1170 and -920 G with a period consistent with the orbital period. There is no field detected in the secondary component. The magnetic field in the primary is predominantly dipolar, with the positive pole oriented approximately towards the secondary.Comment: Accepted for publication by MNRAS, 17 pages, 12 figure

    An Economic Analysis of Texas Shrimp Season Closures

    Get PDF
    Management of the Texas penaeid shrimp fishery is aimed at increasing revenue from brown shrimp, Penaeus aztecus, landings and decreasing the level of discards. Since 1960 Texas has closed its territorial sea for 45-60 days during peak migration of brown shrimp to the Gulf of Mexico. In 1981 the closure was extended to 200 miles to include the U.S. Exclusive Economic Zone. Simulation modeling is used in this paper to estimate the changes in landings, revenue, costs, and economic rent attributable to the Texas closure. Four additional analyses were conducted to estimate the effects of closing the Gulf 1- to 4-fathom zone for 45 and 60 days, with and without effort redirected to inshore waters. Distributional impacts are analyzed in terms of costs, revenues, and rents, by vessel class, shrimp species, vessel owner, and crew

    Investigation of the magnetic field characteristics of Herbig Ae/Be stars: Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars

    Full text link
    We are investigating the magnetic characteristics of pre-main sequence Herbig Ae/Be stars, with the aim of (1) understanding the origin and evolution of magnetism in intermediate-mass stars, and (2) exploring the influence of magnetic fields on accretion, rotation and mass-loss at the early stages of evolution of A, B and O stars. We have begun by conducting 2 large surveys of Herbig Ae/Be stars, searching for direct evidence of photospheric magnetic fields via the longitudinal Zeeman effect. From observations obtained using FORS1 at the ESO-VLT and ESPaDOnS at the Canada-France-Hawaii Telescope, we report the confirmed detection of magnetic fields in 4 pre-main sequence A- and B-type stars, and the apparent (but as yet unconfirmed) detection of fields in 2 other such stars. We do not confirm the detection of magnetic fields in several stars reported by other authors to be magnetic: HD 139614, HD 144432 or HD 31649. One of the most evolved stars in the detected sample, HD 72106A, shows clear evidence of strong photospheric chemical peculiarity, whereas many of the other (less evolved) stars do not. The magnetic fields that we detect appear to have surface intensities of order 1 kG, seem to be structured on global scales, and appear in about 10% of the stars studied. Based on these properties, these magnetic stars appear to be pre-main sequence progenitors of the magnetic Ap/Bp stars.Comment: v2: Include comment regarding publication source To appear in the proceedings of "Solar Polarisation 4", held in Boulder, USA, Sept. 200
    • 

    corecore