12,391 research outputs found

    Vortex-antivortex annihilation in mesoscopic superconductors with a central pinning center

    Full text link
    In this work we solved the time-dependent Ginzburg-Landau equations, TDGL, to simulate two superconducting systems with different lateral sizes and with an antidot inserted in the center. Then, by cycling the external magnetic field, the creation and annihilation dynamics of a vortex-antivortex pair was studied as well as the range of temperatures for which such processes could occur. We verified that in the annihilation process both vortex and antivortex acquire an elongated format while an accelerated motion takes place.Comment: 4 pages, 5 figures, work presented in Vortex VII

    A Method to Tackle First Order Differential Equations with Liouvillian Functions in the Solution - II

    Full text link
    We present a semi-decision procedure to tackle first order differential equations, with Liouvillian functions in the solution (LFOODEs). As in the case of the Prelle-Singer procedure, this method is based on the knowledge of the integrating factor structure.Comment: 11 pages, late

    Evolutionary and Ecological Trees and Networks

    Get PDF
    Evolutionary relationships between species are usually represented in phylogenies, i.e. evolutionary trees, which are a type of networks. The terminal nodes of these trees represent species, which are made of individuals and populations among which gene flow occurs. This flow can also be represented as a network. In this paper we briefly show some properties of these complex networks of evolutionary and ecological relationships. First, we characterize large scale evolutionary relationships in the Tree of Life by a degree distribution. Second, we represent genetic relationships between individuals of a Mediterranean marine plant, Posidonia oceanica, in terms of a Minimum Spanning Tree. Finally, relationships among plant shoots inside populations are represented as networks of genetic similarity.Comment: 6 pages, 5 figures. To appear in Proceedings of the Medyfinol06 Conferenc

    Clone size distributions in networks of genetic similarity

    Get PDF
    We build networks of genetic similarity in which the nodes are organisms sampled from biological populations. The procedure is illustrated by constructing networks from genetic data of a marine clonal plant. An important feature in the networks is the presence of clone subgraphs, i.e. sets of organisms with identical genotype forming clones. As a first step to understand the dynamics that has shaped these networks, we point up a relationship between a particular degree distribution and the clone size distribution in the populations. We construct a dynamical model for the population dynamics, focussing on the dynamics of the clones, and solve it for the required distributions. Scale free and exponentially decaying forms are obtained depending on parameter values, the first type being obtained when clonal growth is the dominant process. Average distributions are dominated by the power law behavior presented by the fastest replicating populations.Comment: 17 pages, 4 figures. One figure improved and other minor changes. To appear in Physica

    Aperture-free star formation rate of SDSS star-forming galaxies

    Full text link
    Large area surveys with a high number of galaxies observed have undoubtedly marked a milestone in the understanding of several properties of galaxies, such as star-formation history, morphology, and metallicity. However, in many cases, these surveys provide fluxes from fixed small apertures (e.g. fibre), which cover a scant fraction of the galaxy, compelling us to use aperture corrections to study the global properties of galaxies. In this work, we derive the current total star formation rate (SFR) of Sloan Digital Sky Survey (SDSS) star-forming galaxies, using an empirically based aperture correction of the measured Hα\rm H\alpha flux for the first time, thus minimising the uncertainties associated with reduced apertures. All the Hα\rm H\alpha fluxes have been extinction-corrected using the Hα/Hβ\rm H\alpha/H\beta ratio free from aperture effects. The total SFR for ∼\sim210,000 SDSS star-forming galaxies has been derived applying pure empirical Hα\rm H\alpha and Hα/Hβ\rm H\alpha/H\beta aperture corrections based on the Calar Alto Legacy Integral Field Area (CALIFA) survey. We find that, on average, the aperture-corrected SFR is ∼\sim0.65dex higher than the SDSS fibre-based SFR. The relation between the SFR and stellar mass for SDSS star-forming galaxies (SFR--M⋆\rm M_\star) has been obtained, together with its dependence on extinction and Hα\rm H\alpha equivalent width. We compare our results with those obtained in previous works and examine the behaviour of the derived SFR in six redshift bins, over the redshift range 0.005≤z≤0.22\rm 0.005 \leq z\leq 0.22. The SFR--M⋆\rm M_\star sequence derived here is in agreement with selected observational studies based on integral field spectroscopy of individual galaxies as well as with the predictions of recent theoretical models of disc galaxies
    • …
    corecore