240 research outputs found

    A novel splicing variant of col2a1 in a fetus with achondrogenesis type ii: Interpretation of pathogenicity of in-frame deletions

    Get PDF
    Achondrogenesis type II (ACG2) is a lethal skeletal dysplasia caused by dominant pathogenic variants in COL2A1. Most of the variants found in patients with ACG2 affect the glycine residue included in the Gly-X-Y tripeptide repeat that characterizes the type II collagen helix. In this study, we reported a case of a novel splicing variant of COL2A1 in a fetus with ACG2. An NGS analysis of fetal DNA revealed a heterozygous variant c.1267-2_1269del located in intron 20/exon 21. The variant occurred de novo since it was not detected in DNA from the blood samples of parents. We generated an appropriate minigene construct to study the effect of the variant detected. The minigene expression resulted in the synthesis of a COL2A1 messenger RNA lacking exon 21, which generated a predicted in-frame deleted protein. Usually, in-frame deletion variants of COL2A1 cause a phenotype such as Kniest dysplasia, which is milder than ACG2. Therefore, we propose that the size and position of an in-frame deletion in COL2A1 may be relevant in determining the phenotype of skeletal dysplasia

    ReSETting PP2A tumour suppressor activity in blast crisis and imatinib-resistant chronic myelogenous leukaemia

    Get PDF
    The deregulated kinase activity of p210-BCR/ABL oncoproteins, hallmark of chronic myelogenous leukaemia (CML), induces and sustains the leukaemic phenotype, and contributes to disease progression. Imatinib mesylate, a BCR/ABL kinase inhibitor, is effective in most of chronic phase CML patients. However, a significant percentage of CML patients develop resistance to imatinib and/or still progresses to blast crisis, a disease stage that is often refractory to imatinib therapy. Furthermore, there is compelling evidence indicating that the CML leukaemia stem cell is also resistant to imatinib. Thus, there is still a need for new drugs that, if combined with imatinib, will decrease the rate of relapse, fully overcome imatinib resistance and prevent blastic transformation of CML. We recently reported that the activity of the tumour suppressor protein phosphatase 2A (PP2A) is markedly inhibited in blast crisis CML patient cells and that molecular or pharmacologic re-activation of PP2A phosphatase led to growth suppression, enhanced apoptosis, impaired clonogenic potential and decreased in vivo leukaemogenesis of imatinib-sensitive and -resistant (T315I included) CML-BC patient cells and/or BCR/ABL+ myeloid progenitor cell lines. Thus, the combination of PP2A phosphatase-activating and BCR/ABL kinase-inhibiting drugs may represent a powerful therapeutic strategy for blast crisis CML patients

    Chronic Myeloid Leukemia Stem Cell Biology

    Get PDF
    Leukemia progression and relapse is fueled by leukemia stem cells (LSC) that are resistant to current treatments. In the progression of chronic myeloid leukemia (CML), blast crisis progenitors are capable of adopting more primitive but deregulated stem cell features with acquired resistance to targeted therapies. This in turn promotes LSC behavior characterized by aberrant self-renewal, differentiation, and survival capacity. Multiple reports suggest that cell cycle alterations, activation of critical signaling pathways, aberrant microenvironmental cues from the hematopoietic niche, and aberrant epigenetic events and deregulation of RNA processing may facilitate the enhanced survival and malignant transformation of CML progenitors. Here we review the molecular evolution of CML LSC that promotes CML progression and relapse. Recent advances in these areas have identified novel targets that represent important avenues for future therapeutic approaches aimed at selectively eradicating the LSC population while sparing normal hematopoietic progenitors in patients suffering from chronic myeloid malignancies

    Queer Youth and the Culture Wars: From Classroom to Courtroom in Australia, Canada and the United States

    Get PDF
    This article builds on Lugg\u27s (2006) discussion of surveillance in public schools and how queer youth are resisting schools\u27 current efforts to regulate sexual orientation and gender expression in the U.S. and internationally. Legal complaints initiated by queer youth against their schools for harassment and access to extra-curricular activities are discussed. The number of cases in the past five years has increased significantly and the courts are siding with the youth and their allies, demonstrating that queer youth are significantly impacting the dismantling of heteronormative regulatory regimes and improving the school experiences for themselves and queer adults

    Extensive Gene-Specific Translational Reprogramming in a Model of B Cell Differentiation and Abl-Dependent Transformation

    Get PDF
    To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation

    Precancerous Stem Cells Have the Potential for both Benign and Malignant Differentiation

    Get PDF
    Cancer stem cells (CSCs) have been identified in hematopoietic and solid tumors. However, their precursorsβ€”namely, precancerous stem cells (pCSCs) β€”have not been characterized. Here we experimentally define the pCSCs that have the potential for both benign and malignant differentiation, depending on environmental cues. While clonal pCSCs can develop into various types of tissue cells in immunocompetent mice without developing into cancer, they often develop, however, into leukemic or solid cancers composed of various types of cancer cells in immunodeficient mice. The progress of the pCSCs to cancers is associated with the up-regulation of c-kit and Sca-1, as well as with lineage markers. Mechanistically, the pCSCs are regulated by the PIWI/AGO family gene called piwil2. Our results provide clear evidence that a single clone of pCSCs has the potential for both benign and malignant differentiation, depending on the environmental cues. We anticipate pCSCs to be a novel target for the early detection, prevention, and therapy of cancers
    • …
    corecore