151 research outputs found

    SERCA directs cell migration and branching across species and germ layers

    Get PDF
    Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding

    Long Covid in adults discharged from UK hospitals after Covid-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol.

    Get PDF
    Background: This study sought to establish the long-term effects of Covid-19 following hospitalisation. Methods: 327 hospitalised participants, with SARS-CoV-2 infection were recruited into a prospective multicentre cohort study at least 3 months post-discharge. The primary outcome was self-reported recovery at least ninety days after initial Covid-19 symptom onset. Secondary outcomes included new symptoms, disability (Washington group short scale), breathlessness (MRC Dyspnoea scale) and quality of life (EQ5D-5L). Findings: 55% of participants reported not feeling fully recovered. 93% reported persistent symptoms, with fatigue the most common (83%), followed by breathlessness (54%). 47% reported an increase in MRC dyspnoea scale of at least one grade. New or worse disability was reported by 24% of participants. The EQ5D-5L summary index was significantly worse following acute illness (median difference 0.1 points on a scale of 0 to 1, IQR: -0.2 to 0.0). Females under the age of 50 years were five times less likely to report feeling recovered (adjusted OR 5.09, 95% CI 1.64 to 15.74), were more likely to have greater disability (adjusted OR 4.22, 95% CI 1.12 to 15.94), twice as likely to report worse fatigue (adjusted OR 2.06, 95% CI 0.81 to 3.31) and seven times more likely to become more breathless (adjusted OR 7.15, 95% CI 2.24 to 22.83) than men of the same age. Interpretation: Survivors of Covid-19 experienced long-term symptoms, new disability, increased breathlessness, and reduced quality of life. These findings were present in young, previously healthy working age adults, and were most common in younger females. Funding: National Institute for Health Research, UK Medical Research Council, Wellcome Trust, Department for International Development and the Bill and Melinda Gates Foundation

    Long Covid in adults discharged from UK hospitals after Covid-19 : a prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol

    Get PDF
    Funding: This work is supported by grants from: the National Institute for Health Research (NIHR) [award CO-CIN-01], the Medical Research Council [grant MC_PC_19059], the Imperial Biomedical Research Centre (NIHR Imperial BRC, grant P45058), the Health Protection Research Unit (HPRU) in Respiratory Infections at Imperial College London and NIHR HPRU in Emerging and Zoonotic Infections at University of Liverpool, both in partnership with Public Health England, [NIHR award 200907], Wellcome Trust and Department for International Development [215091/Z/18/Z], and the Bill and Melinda Gates Foundation [OPP1209135], and Liverpool Experimental Cancer Medicine Centre (Grant Reference: C18616/A25153), NIHR Biomedical Research Centre at Imperial College London [IS-BRC-1215-20013], EU Platform for European Preparedness Against (Re-) emerging Epidemics 1 [FP7 project 602525] and NIHR Clinical Research Network for providing infrastructure support for this research. LT is a Wellcome Trust clinical career development fellow, supported by grant number 205228/Z/16/Z. This research was funded in part, by the Wellcome Trust. PJMO is supported by a NIHR Senior Investigator Award [award 201385].Background : This study sought to establish the long-term effects of Covid-19 following hospitalisation. Methods : 327 hospitalised participants, with SARS-CoV-2 infection were recruited into a prospective multicentre cohort study at least 3 months post-discharge. The primary outcome was self-reported recovery at least ninety days after initial Covid-19 symptom onset. Secondary outcomes included new symptoms, disability (Washington group short scale), breathlessness (MRC Dyspnoea scale) and quality of life (EQ5D-5L). Findings : 55% of participants reported not feeling fully recovered. 93% reported persistent symptoms, with fatigue the most common (83%), followed by breathlessness (54%). 47% reported an increase in MRC dyspnoea scale of at least one grade. New or worse disability was reported by 24% of participants. The EQ5D-5L summary index was significantly worse following acute illness (median difference 0.1 points on a scale of 0 to 1, IQR: -0.2 to 0.0). Females under the age of 50 years were five times less likely to report feeling recovered (adjusted OR 5.09, 95% CI 1.64 to 15.74), were more likely to have greater disability (adjusted OR 4.22, 95% CI 1.12 to 15.94), twice as likely to report worse fatigue (adjusted OR 2.06, 95% CI 0.81 to 3.31) and seven times more likely to become more breathless (adjusted OR 7.15, 95% CI 2.24 to 22.83) than men of the same age. Interpretation : Survivors of Covid-19 experienced long-term symptoms, new disability, increased breathlessness, and reduced quality of life. These findings were present in young, previously healthy working age adults, and were most common in younger females.Publisher PDFPeer reviewe

    An appraisal of rehabilitation regimes used for improving functional outcome after total hip replacement surgery

    Get PDF
    This study aimed to systematically review the literature with regards to studies of rehabilitation programmes that have tried to improve function after total hip replacement (THR) surgery. 15 randomised controlled trials were identified of which 11 were centre-based, 2 were home based and 2 were trials comparing home and centre based interventions. The use of a progressive resistance training (PRT) programme led to significant improvement in muscle strength and function if the intervention was carried out early (< 1 month following surgery) in a centre (6/11 centre-based studies used PRT), or late (> 1 month following surgery) in a home based setting (2/2 home based studies used PRT). In direct comparison, there was no difference in functional measures between home and centre based programmes (2 studies), with PRT not included in the regimes prescribed. A limitation of the majority of these intervention studies was the short period of follow up. Centre based program delivery is expensive as high costs are associated with supervision, facility provision, and transport of patients. Early interventions are important to counteract the deficit in muscle strength in the affected limb, as well as persistent atrophy that exists around the affected hip at 2 years post-operatively. Studies of early home-based regimes featuring PRT with long term follow up are needed to address the problems currently associated with rehabilitation following THR

    The Peter Pan paradigm

    Get PDF
    Genetic and environmental agents that disrupt organogenesis are numerous and well described. Less well established, however, is the role of delay in the developmental processes that yield functionally immature tissues at birth. Evidence is mounting that organs do not continue to develop postnatally in the context of these organogenesis insults, condemning the patient to utilize under-developed tissues for adult processes. These poorly differentiated organs may appear histologically normal at birth but with age may deteriorate revealing progressive or adult-onset pathology. The genetic and molecular underpinning of the proposed paradigm reveals the need for a comprehensive systems biology approach to evaluate the role of maternal-fetal environment on organogenesis

    Novel Murine Infection Models Provide Deep Insights into the “Ménage à Trois” of Campylobacter jejuni, Microbiota and Host Innate Immunity

    Get PDF
    BACKGROUND: Although Campylobacter jejuni-infections have a high prevalence worldwide and represent a significant socioeconomic burden, it is still not well understood how C. jejuni causes intestinal inflammation. Detailed investigation of C. jejuni-mediated intestinal immunopathology is hampered by the lack of appropriate vertebrate models. In particular, mice display colonization resistance against this pathogen. METHODOLOGY/PRINCIPAL FINDINGS: To overcome these limitations we developed a novel C. jejuni-infection model using gnotobiotic mice in which the intestinal flora was eradicated by antibiotic treatment. These animals could then be permanently associated with a complete human (hfa) or murine (mfa) microbiota. After peroral infection C. jejuni colonized the gastrointestinal tract of gnotobiotic and hfa mice for six weeks, whereas mfa mice cleared the pathogen within two days. Strikingly, stable C. jejuni colonization was accompanied by a pro-inflammatory immune response indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils and apoptotic cells, as well as increased concentrations of TNF-α, IL-6, and MCP-1 in the colon mucosa of hfa mice. Analysis of MyD88(-/-), TRIF(-/-), TLR4(-/-), and TLR9(-/-) mice revealed that TLR4- and TLR9-signaling was essential for immunopathology following C. jejuni-infection. Interestingly, C. jejuni-mutant strains deficient in formic acid metabolism and perception induced less intestinal immunopathology compared to the parental strain infection. In summary, the murine gut flora is essential for colonization resistance against C. jejuni and can be overcome by reconstitution of gnotobiotic mice with human flora. Detection of C. jejuni-LPS and -CpG-DNA by host TLR4 and TLR9, respectively, plays a key role in immunopathology. Finally, the host immune response is tightly coupled to bacterial formic acid metabolism and invasion fitness. CONCLUSION/SIGNIFICANCE: We conclude that gnotobiotic and "humanized" mice represent excellent novel C. jejuni-infection and -inflammation models and provide deep insights into the immunological and molecular interplays between C. jejuni, microbiota and innate immunity in human campylobacteriosis
    corecore