2,643 research outputs found

    Nonequilibrium steady states of driven magnetic flux lines in disordered type-II superconductors

    Full text link
    We investigate driven magnetic flux lines in layered type-II superconductors subject to various configurations of strong point or columnar pinning centers by means of a three-dimensional elastic line model and Metropolis Monte Carlo simulations. We characterize the resulting nonequilibrium steady states by means of the force-velocity / current-voltage curve, static structure factor, mean vortex radius of gyration, number of double-kink and half-loop excitations, and velocity / voltage noise spectrum. We compare the results for the above observables for randomly distributed point and columnar defects, and demonstrate that the three-dimensional flux line structures and their fluctuations lead to a remarkable variety of complex phenomena in the steady-state transport properties of bulk superconductors.Comment: 23 pages, IOP style, 18 figures include

    Seyfert Galaxies and the Hard X-ray Background: Artificial Chandra Observations of z = 0.3 Active Galaxies

    Full text link
    Deep X-ray surveys have resolved much of the X-ray background radiation below 2 keV into discrete sources, but the background above 8 keV remains largely unresolved. The obscured (type 2) Active Galactic Nuclei (AGNs) that are expected to dominate the hard X-ray background have not yet been detected in sufficient numbers to account for the observed background flux. However, deep X-ray surveys have revealed large numbers of faint quiescent and starburst galaxies at moderate redshifts. In hopes of recovering the missing AGN population, it has been suggested that the defining optical spectral features of low-luminosity Seyfert nuclei at large distances may be overwhelmed by their host galaxies, causing them to appear optically quiescent in deep surveys. We test this possibility by artificially redshifting a sample of 23 nearby, well-studied active galaxies to z = 0.3, testing them for X-ray AGN signatures and comparing them to the objects detected in deep X-ray surveys. We find that these redshifted galaxies have properties consistent with the deep field ``normal'' and ``optically bright, X-ray faint'' (OBXF) galaxy populations, supporting the hypothesis that the numbers of AGNs in deep X-ray surveys are being underestimated, and suggesting that OBXFs should not be ruled out as candidate AGN hosts that could contribute to the hard X-ray background source population.Comment: 14 pages (uses emulateapj), 5 figures (4 color). Accepted for publication by A

    The Sun's Preferred Longitudes and the Coupling of Magnetic Dynamo Modes

    Full text link
    Observations show that solar activity is distributed non-axisymmetrically, concentrating at "preferred longitudes". This indicates the important role of non-axisymmetric magnetic fields in the origin of solar activity. We investigate the generation of the non-axisymmetric fields and their coupling with axisymmetric solar magnetic field. Our kinematic generation (dynamo) model operating in a sphere includes solar differential rotation, which approximates the differential rotation obtained by inversion of helioseismic data, modelled distributions of the turbulent resistivity, non-axisymmetric mean helicity, and meridional circulation in the convection zone. We find that (1) the non-axisymmetric modes are localised near the base of the convection zone, where the formation of active regions starts, and at latitudes around 30∘30^{\circ}; (2) the coupling of non-axisymmetric and axisymmetric modes causes the non-axisymmetric mode to follow the solar cycle; the phase relations between the modes are found. (3) The rate of rotation of the first non-axisymmetric mode is close to that determined in the interplanetary space.Comment: 22 pages, 18 figures. Accepted for publication in the Astrophysical Journa

    Non-Esterified Fatty Acids Generate Distinct Low-Molecular Weight Amyloid-β (Aβ42) Oligomers along Pathway Different from Fibril Formation

    Get PDF
    Amyloid-beta (A beta) peptide aggregation is known to play a central role in the etiology of Alzheimer\u27s disease (AD). Among various aggregates, low-molecular weight soluble oligomers of A beta are increasingly believed to be the primary neurotoxic agents responsible for memory impairment. Anionic interfaces are known to influence the A beta aggregation process significantly. Here, we report the effects of interfaces formed by medium-chain (C9-C12), saturated non-esterified fatty acids (NEFAs) on A beta 42 aggregation. NEFAs uniquely affected A beta 42 aggregation rates that depended on both the ratio of A beta:NEFA as well the critical micelle concentration (CMC) of the NEFAs. More importantly, irrespective of the kind of NEFA used, we observed that two distinct oligomers, 12-18 mers and 4-5 mers were formed via different pathway of aggregation under specific experimental conditions: (i) 12-18 mers were generated near the CMC in which NEFAs augment the rate of A beta 42 aggregation towards fibril formation, and, (ii) 4-5 mers were formed above the CMC, where NEFAs inhibit fibril formation. The data indicated that both 12-18 mers and 4-5 mers are formed along an alternate pathway called \u27off-pathway\u27 that did not result in fibril formation and yet have subtle structural and morphological differences that distinguish their bulk molecular behavior. These observations, (i) reflect the possible mechanism of A beta aggregation in physiological lipid-rich environments, and (ii) reiterate the fact that all oligomeric forms of A beta need not be obligatory intermediates of the fibril formation pathway

    Accelerated development of arthritis in mice lacking endothelial selectins

    Get PDF
    The selectins, along with very late antigen-4 and CD44, have been implicated in mediating leukocyte rolling interactions that lead to joint recruitment and inflammation during the pathogenesis of rheumatoid arthritis. Previously, we showed that P-selectin deficiency in mice resulted in accelerated onset of joint inflammation in the murine collagen-immunized arthritis model. Here, we report that mice deficient either in E-selectin or in E-selectin and P-selectin (E/P-selectin mutant) also exhibit accelerated development of arthritis compared with wild type mice in the CIA model, suggesting that these adhesion molecules perform overlapping functions in regulating joint disease. Analyses of cytokine and chemokine expression in joint tissue from E/P-selectin mutant mice before the onset of joint swelling revealed significantly higher joint levels of macrophage inflammatory protein-1α and IL-1β compared to wild-type mice. IL-1β remained significantly increased in E/P-selectin mutant joint tissue during the early and chronic phases of arthritis. Overall, these data illustrate the novel finding that E-selectin and P-selectin expression can significantly influence cytokine and chemokine production in joint tissue, and suggest that these adhesion molecules play important regulatory roles in the development of arthritis in E/P-selectin mutant mice

    Label-free electrochemical monitoring of DNA ligase activity

    Get PDF
    This study presents a simple, label-free electrochemical technique for the monitoring of DNA ligase activity. DNA ligases are enzymes that catalyze joining of breaks in the backbone of DNA and are of significant scientific interest due to their essential nature in DNA metabolism and their importance to a range of molecular biological methodologies. The electrochemical behavior of DNA at mercury and some amalgam electrodes is strongly influenced by its backbone structure, allowing a perfect discrimination between DNA molecules containing or lacking free ends. This variation in electrochemical behavior has been utilized previously for a sensitive detection of DNA damage involving the sugar-phosphate backbone breakage. Here we show that the same principle can be utilized for monitoring of a reverse process, i.e., the repair of strand breaks by action of the DNA ligases. We demonstrate applications of the electrochemical technique for a distinction between ligatable and unligatable breaks in plasmid DNA using T4 DNA ligase, as well as for studies of the DNA backbone-joining activity in recombinant fragments of E. coli DNA ligase

    Preferential dust sources: a geomorphological classification designed for use in global dust-cycle models

    Get PDF
    We present a simple theoretical land-surface classification that can be used to determine the location and temporal behaviour of preferential sources of terrestrial dust emissions. The classification also provides information about the likely nature of the sediments, their erodibility and the likelihood that they will generate emissions under given conditions. The scheme is based on the dual notions of geomorphic type and connectivity between geomorphic units. We demonstrate that the scheme can be used to map potential modern-day dust sources in the Chihuahuan Desert, the Lake Eyre Basin and the Taklamakan. Through comparison with observed dust emissions, we show that the scheme provides a reasonable prediction of areas of emission in the Chihuahuan Desert and in the Lake Eyre Basin. The classification is also applied to point source data from the Sahara to enable comparison of the relative importance of different land surfaces for dust emissions. We indicate how the scheme could be used to provide an improved characterisation of preferential dust sources in global dust-cycle models

    The TgsGP gene is essential for resistance to human serum in Trypanosoma brucei gambiense

    Get PDF
    Trypanosoma brucei gambiense causes 97% of all cases of African sleeping sickness, a fatal disease of sub-Saharan Africa. Most species of trypanosome, such as T. b. brucei, are unable to infect humans due to the trypanolytic serum protein apolipoprotein-L1 (APOL1) delivered via two trypanosome lytic factors (TLF-1 and TLF-2). Understanding how T. b. gambiense overcomes these factors and infects humans is of major importance in the fight against this disease. Previous work indicated that a failure to take up TLF-1 in T. b. gambiense contributes to resistance to TLF-1, although another mechanism is required to overcome TLF-2. Here, we have examined a T. b. gambiense specific gene, TgsGP, which had previously been suggested, but not shown, to be involved in serum resistance. We show that TgsGP is essential for resistance to lysis as deletion of TgsGP in T. b. gambiense renders the parasites sensitive to human serum and recombinant APOL1. Deletion of TgsGP in T. b. gambiense modified to uptake TLF-1 showed sensitivity to TLF-1, APOL1 and human serum. Reintroducing TgsGP into knockout parasite lines restored resistance. We conclude that TgsGP is essential for human serum resistance in T. b. gambiense
    • …
    corecore