51 research outputs found
The Unconserved Groucho Central Region Is Essential for Viability and Modulates Target Gene Specificity
Groucho (Gro) is a Drosophila corepressor required by numerous DNA-binding repressors, many of which are distributed in gradients and provide positional information during development. Gro contains well-conserved domains at its N- and C-termini, and a poorly conserved central region that includes the GP, CcN, and SP domains. All lethal point mutations in gro map to the conserved regions, leading to speculation that the unconserved central domains are dispensable. However, our sequence analysis suggests that the central domains are disordered leading us to suspect that the lack of lethal mutations in this region reflects a lack of order rather than an absence of essential functions. In support of this conclusion, genomic rescue experiments with Gro deletion variants demonstrate that the GP and CcN domains are required for viability. Misexpression assays using these same deletion variants show that the SP domain prevents unrestrained and promiscuous repression by Gro, while the GP and CcN domains are indispensable for repression. Deletion of the GP domain leads to loss of nuclear import, while deletion of the CcN domain leads to complete loss of repression. Changes in Gro activity levels reset the threshold concentrations at which graded repressors silence target gene expression. We conclude that co-regulators such as Gro are not simply permissive components of the repression machinery, but cooperate with graded DNA-binding factors in setting borders of gene expression. We suspect that disorder in the Gro central domains may provide the flexibility that allows this region to mediate multiple interactions required for repression
Establishment of Motor Neuron-V3 Interneuron Progenitor Domain Boundary in Ventral Spinal Cord Requires Groucho-Mediated Transcriptional Corepression
Background: Dorsoventral patterning of the developing spinal cord is important for the correct generation of spinal neuronal types. This process relies in part on cross-repressive interactions between specific transcription factors whose expression is regulated by Sonic hedgehog. Groucho/transducin-like Enhancer of split (TLE) proteins are transcriptional corepressors suggested to be recruited by at least certain Sonic hedgehog-controlled transcription factors to mediate the formation of spatially distinct progenitor domains within the ventral spinal cord. The aim of this study was to characterize the involvement of TLE in mechanisms regulating the establishment of the boundary between the most ventral spinal cord progenitor domains, termed pMN and p3. Because the pMN domain gives rise to somatic motor neurons while the p3 domain generates V3 interneurons, we also examined the involvement of TLE in the acquisition of these neuronal fates. Methodology and Principal Findings: A combination of in vivo loss- and gain-of-function studies in the developing chick spinal cord was performed to characterize the role of TLE in ventral progenitor domain formation. It is shown here that TLE overexpression causes increased numbers of p3 progenitors and promotes the V3 interneuron fate while suppressing the motor neuron fate. Conversely, dominant-inhibition of TLE increases the numbers of pMN progenitors and postmitotic motor neurons. Conclusion: Based on these results, we propose that TLE is important to promote the formation of the p3 domain an
Molecular mechanisms of EGF signaling-dependent regulation of pipe, a gene crucial for dorsoventral axis formation in Drosophila
During Drosophila oogenesis the expression of the sulfotransferase Pipe in ventral follicle cells is crucial for dorsoventral axis formation. Pipe modifies proteins that are incorporated in the ventral eggshell and activate Toll signaling which in turn initiates embryonic dorsoventral patterning. Ventral pipe expression is the result of an oocyte-derived EGF signal which down-regulates pipe in dorsal follicle cells. The analysis of mutant follicle cell clones reveals that none of the transcription factors known to act downstream of EGF signaling in Drosophila is required or sufficient for pipe regulation. However, the pipe cis-regulatory region harbors a 31-bp element which is essential for pipe repression, and ovarian extracts contain a protein that binds this element. Thus, EGF signaling does not act by down-regulating an activator of pipe as previously suggested but rather by activating a repressor. Surprisingly, this repressor acts independent of the common co-repressors Groucho or CtBP
Recommended from our members
Mass balance of the northeast sector of the Greenland ice sheet: A remote-sensing perspective
Synthetic-aperture radar interferometry data and airborne ice-sounding radar (ISR) data are employed to obtain modern estimates of the inland ice production from Nioghalvfjerdsbrae (NB) and Zachariae Isstrom (ZI), the two largest glaciers draining the northeast sector of the Greenland ice sheet. Ice fluxes are measured at the grounding line (14.2 ± 1 km3 ice a-1 for NB and 10.8 ± 1 km3 ice a-1 for ZI) with an ice thickness deduced from ice-shelf hydrostatic equilibrium, and along an ISR profile collected upstream of the grounding line (14.3 ± 0.7 km3 ice a-1 for NB and 11.6 ± 0.6 km3 ice a-1 for ZI). Balance fluxes calculated from a map of snow accumulation and model predictions of surface melt are 11.9 ± 2 km3 ice a-1 for NB and 10.0 ± 2 km3 ice a-1 for ZI at the grounding line, and 12.2 and 10.3 km3 ice a-1, respectively, at the ISR line. The two glaciers therefore exhibit a negative mass balance equivalent to 14% of their balance flux, with a ±12% uncertainty. Independently, we detect a retreat of the grounding line of NB between 1992 and 1996 which is larger at the glacier center (920 ± 250 m) than on the sides (240 ± 50 m). The corresponding ice-thinning rates (2±1 m a-1 at the glacier center and 0.6±0.3 m a-1 on the sides) are too large to be accommodated by temporal changes in ablation or accumulation, and must be due to dynamic thinning
Modeling of the Recrystallization and Austenite Formation Overlapping in Cold‐Rolled Dual‐Phase Steels During Intercritical Treatments
International audienceno abstrac
TRAC, a collaborative computer tool for tracer-test interpretation
Artificial tracer tests are widely used by consulting engineers for demonstrating water circulation, proving the existence of leakage, or estimating groundwater velocity. However, the interpretation of such tests is often very basic, with the result that decision makers and professionals commonly face unreliable results through hasty and empirical interpretation. There is thus an increasing need for a reliable interpretation tool, compatible with the latest operating systems and available in several languages. BRGM, the French Geological Survey, has developed a project together with hydrogeologists from various other organizations to build software assembling several analytical solutions in order to comply with various field contexts. This computer program, called TRAC, is very light and simple, allowing the user to add his own analytical solution if the formula is not yet included. It aims at collaborative improvement by sharing the tool and the solutions. TRAC can be used for interpreting data recovered from a tracer test as well as for simulating the transport of a tracer in the saturated zone (for the time being). Calibration of a site operation is based on considering the hydrodynamic and hydrodispersive features of groundwater flow as well as the amount, nature and injection mode of the artificial tracer. The software is available in French, English and Spanish, and the latest version can be downloaded from the web site http://trac.brgm.f
- …