124 research outputs found

    Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France)

    Get PDF
    Under certain hydrological conditions it is possible for spring flow in karst systems to be reversed. When this occurs, the resulting invasion by surface water, i.e. the backflooding, represents a serious threat to groundwater quality because the surface water could well be contaminated. Here we examine the possible impact of future climate change on the occurrences of backflooding in a specific karst system, having first established the occurrence of such events in the selected study area over the past 40 years. It would appear that backflooding has been more frequent since the 1980s, and that it is apparently linked to river flow variability on the pluri-annual scale. The avenue that we adopt here for studying recent and future variations of these events is based on a downscaling algorithm relating large-scale atmospheric circulation to local precipitation spatial patterns. The large-scale atmospheric circulation is viewed as a set of quasi-stationary and recurrent states, called weather types, and its variability as the transition between them. Based on a set of climate model projections, simulated changes in weather-type occurrence for the end of the century suggests that backflooding events can be expected to decrease in 2075–2099. If such is the case, then the potential risk for groundwater quality in the area will be greatly reduced compared to the current situation. Finally, our results also show the potential interest of the weather-type based downscaling approach for examining the impact of climate change on hydrological systems

    Qualidade física do solo a partir da curva de retenção de água: contribuição à teoria do índice S.

    Get PDF
    Neste trabalho, discutem-se os valores da declividade da curva de retenção de água no seu ponto de inflexão de acordo com a variável independente utilizada na construção da curva

    Allochthonous material originating from saprolite as a marker of termite activity in Ferralsols.

    Get PDF
    Ferralsols, which are estimated to cover 7.5 millions km² worldwide, are deeply weathered red or yellow soils found in the humid tropics. They are considered as the end of a geochemical sequence of weathering and are dominated by low-activity clay and sesquioxides. Their physical properties are closely related to their strong submillimetric granular structure. We aimed to characterize the 2:1 clay minerals identified in many Ferralsols and to discuss them as a marker of soil-feeding termite activity in Ferralsols. We present results recorded with Brazilian Ferralsols developed under Cerrado native vegetation on a range of parent materials. It was found that the 2:1 minerals vary from weakly weathered muscovite to hydroxy-Al interlayered vermiculite, sometimes associated to a fine material with a chemical composition highly different from that of the groundmass of the surrounding submillimetric granular aggregates. Results show that both 2:1 minerals and the associated fine material have to be considered as allochthonous material originating from the saprolite and were brought to the Ferralsol by soil-feeding termite activity. This confirms the major role of termites in the properties of Ferralsols and raises questions about the possible consequences of land use change which usually deeply affects soil biodiversity.Na publicação: Adriana Reatto

    Felsic crust development in the Kaapvaal Craton, South Africa: A reference sample collection to investigate a billion years of geological history

    Get PDF
    The crust of the Kaapvaal craton accreted throughout the Archaean over nearly 1 billion years. It provides a unique example of the various geological processes that shape Earth's continental crust, and is illustrated by a reference collection of granitoids and mafic rocks (SWASA collection). This sample collection is fully characterised in term of age, major and trace elements, and documents the following multistage history of the craton. In the Barberton area, the initial stages of accretion (stage B·I, > 3.33 Ga and B.II, 3.28—3.21 Ga) correspond to the formation of a sodic (TTG) crust extracted from a near-chondritic reservoir. Stage B.III (ca. 3.1 Ga) corresponds to reworking of this crust, either through intracrustal melting, or via recycling of some material into the mantle and melting of this enriched mantle. Stage B.IV (2.85—2.7 Ga) corresponds to the emplacement of small, discrete plutons involving limited intracrustal reworking. The Northern Kaapvaal craton corresponds to a mobile belt flanking the Barberton cratonic core to the North. Stage NK·I (> 3.1 Ga) resembles stages B·I and B.II: formation of a TTG crust from a chondritic reservoir. In contrast, stage NK.II. (2.97–2.88 Ga) witnesses probable rifting of a cratonic fragment and formation of greenstone basins as well as a new generation of TTGs with both the mafic and felsic magmatism extracted from an isotopically depleted mantle (super-chondritic) reservoir. Intra-crustal reworking dominates stage NK.III (2.88–2.71 Ga), whereas sanukitoids and related granites, involving a mantle contaminated by recycled crustal material, are common during stage NK.IV (ca. 2.67 Ga)

    Classification and evolutionary history of the single-strand annealing proteins, RecT, Redβ, ERF and RAD52

    Get PDF
    BACKGROUND: The DNA single-strand annealing proteins (SSAPs), such as RecT, Redβ, ERF and Rad52, function in RecA-dependent and RecA-independent DNA recombination pathways. Recently, they have been shown to form similar helical quaternary superstructures. However, despite the functional similarities between these diverse SSAPs, their actual evolutionary affinities are poorly understood. RESULTS: Using sensitive computational sequence analysis, we show that the RecT and Redβ proteins, along with several other bacterial proteins, form a distinct superfamily. The ERF and Rad52 families show no direct evolutionary relationship to these proteins and define novel superfamilies of their own. We identify several previously unknown members of each of these superfamilies and also report, for the first time, bacterial and viral homologs of Rad52. Additionally, we predict the presence of aberrant HhH modules in RAD52 that are likely to be involved in DNA-binding. Using the contextual information obtained from the analysis of gene neighborhoods, we provide evidence of the interaction of the bacterial members of each of these SSAP superfamilies with a similar set of DNA repair/recombination protein. These include different nucleases or Holliday junction resolvases, the ABC ATPase SbcC and the single-strand-binding protein. We also present evidence of independent assembly of some of the predicted operons encoding SSAPs and in situ displacement of functionally similar genes. CONCLUSIONS: There are three evolutionarily distinct superfamilies of SSAPs, namely the RecT/Redβ, ERF, and RAD52, that have different sequence conservation patterns and predicted folds. All these SSAPs appear to be primarily of bacteriophage origin and have been acquired by numerous phylogenetically distant cellular genomes. They generally occur in predicted operons encoding one or more of a set of conserved DNA recombination proteins that appear to be the principal functional partners of the SSAPs

    A Major Role of the RecFOR Pathway in DNA Double-Strand-Break Repair through ESDSA in Deinococcus radiodurans

    Get PDF
    In Deinococcus radiodurans, the extreme resistance to DNA–shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a ΔrecA mutant: ΔrecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to γ-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, ΔuvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of ΔuvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA

    DnaC Inactivation in Escherichia coli K-12 Induces the SOS Response and Expression of Nucleotide Biosynthesis Genes

    Get PDF
    Background: Initiation of chromosome replication in E. coli requires the DnaA and DnaC proteins and conditionally-lethal dnaA and dnaC mutants are often used to synchronize cell populations. Methodology/Principal Findings: DNA microarrays were used to measure mRNA steady-state levels in initiation-deficient dnaA46 and dnaC2 bacteria at permissive and non-permissive temperatures and their expression profiles were compared to MG1655 wildtype cells. For both mutants there was altered expression of genes involved in nucleotide biosynthesis at the non-permissive temperature. Transcription of the dnaA and dnaC genes was increased at the non-permissive temperature in the respective mutant strains indicating auto-regulation of both genes. Induction of the SOS regulon was observed in dnaC2 cells at 38uC and 42uC. Flow cytometric analysis revealed that dnaC2 mutant cells at non-permissive temperature had completed the early stages of chromosome replication initiation. Conclusion/Significance: We suggest that in dnaC2 cells the SOS response is triggered by persistent open-complex formation at oriC and/or by arrested forks that require DnaC for replication restart
    corecore