20 research outputs found

    Critical Limits for Hg(II) in soils, derived from chronic toxicity data

    Get PDF
    Published chronic toxicity data for Hg(II) added to soils were assembled and evaluated to produce a data set comprising 52 chronic endpoints, five each for plants and invertebrates and 42 for microbes. With endpoints expressed in terms of added soil Hg(II) contents, Critical Limits were derived from the 5th percentiles of species sensitivity distributions, values of 0.13 ÎŒg (g soil)-1 and 3.3 ÎŒg (g soil organic matter)-1 being obtained. The latter value exceeds the currently-recommended Critical Limit, used to determine Hg(II) Critical Loads in Europe, of 0.5 ÎŒg (g soil organic matter)-1. We also applied the WHAM/Model VI chemical speciation model to estimate concentrations of Hg2+ in soil solution, and derived an approximate Critical Limit Function (CLF) that includes pH; log [Hg2+]crit = - 2.15 pH – 17.10. Because they take soil properties into account, the soil organic matter-based limit and the CLF provide the best assessment of toxic threat for different soils. For differing representative soils, each predicts a range of up to 100-fold in the dry weight-based content of mercury that corresponds to the Critical Limit

    Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc and mercury in soil and soil solution in view of ecotoxicological effects

    Get PDF
    Concern about the input of metals to terrestrial ecosystems is related to (i) the ecotoxicological impact on soil organisms and plants (Bringmark et al. 1998; Palmborg et al. 1998) and also on aquatic organisms resulting from runoff to surface water and (ii) the uptake via food chains into animal tissues and products, which may result in health effects on animals and humans (Clark 1989). Effects on soil organisms, including microorganisms/macrofungi and soil fauna, such as nematodes and earthworms, are reduced species diversity, abundance, and biomass and changes in microbe-mediated processes (Bengtsson and Tranvik 1989; Giller et al. 1998; Vig et al. 2003). Effects on vascular plants include reduced development and growth of roots and shoots, elevated concentrations of starch and total sugar, decreased nutrient contents in foliar tissues, and decreased enzymatic activity (Prasad 1995; Das et al. 1997). A review of these phytotoxic effects is given by Balsberg-PĂ„hlsson (1989). Effects on aquatic organisms, including algae, Crustacea, and fish, include effects on gill function (Sola et al. 1995), nervous systems (Baatrup 1991), and growth and reproduction rates (Mance 1987). Environmental quality standards or critical limits, often also denoted as Predicted No Effect Concentrations, or PNECs, for metals in soils and surface waters related to those effects serve as a guide in the environmental risk assessment process for those substances

    Trace metal budgets for forested catchments in Europe – Pb, Cd, Hg, Cu and Zn

    Get PDF
    Input/output budgets for cadmium (Cd), lead (Pb) and mercury (Hg) in the years 1997 monitored and determined for 14 small forest-covered catchments across Europe as part of the Integrated Monitoring program on the effects of long-range pollutants on ecosystems. Metal inputs were considered to derive from bulk deposition, throughfall and litterfall. Outputs were estimated from run-off values. Litterfall plus throughfall was taken as a measure of the total deposition of Pb and Hg (wet+dry) on the basis of evidence suggesting that, for these metals, internal circulation is negligible. The same is not true for Cd. Excluding a few sites with high discharge, between 74 and 94 % of the input Pb was retained within the catchments; significant Cd retention was also observed. High losses of Pb (>1.4 mgm (>0.15 mgm Central European sites with high water discharge. All other sites had outputs below or equal to 0.36 and 0.06 mgm Almost complete retention of Hg, 86 was reported in the Swedish sites. These high levels of metal retention were maintained even in the face of recent dramatic reductions in pollutant loads.–2011 were−2year−1) and Cd−2year−1) were observed in two mountainous−2year−1, respectively, for the two metals.–99 % of input
    corecore