429 research outputs found

    Equilibria in Sequential Allocation

    Full text link
    Sequential allocation is a simple mechanism for sharing multiple indivisible items. We study strategic behavior in sequential allocation. In particular, we consider Nash dynamics, as well as the computation and Pareto optimality of pure equilibria, and Stackelberg strategies. We first demonstrate that, even for two agents, better responses can cycle. We then present a linear-time algorithm that returns a profile (which we call the "bluff profile") that is in pure Nash equilibrium. Interestingly, the outcome of the bluff profile is the same as that of the truthful profile and the profile is in pure Nash equilibrium for \emph{all} cardinal utilities consistent with the ordinal preferences. We show that the outcome of the bluff profile is Pareto optimal with respect to pairwise comparisons. In contrast, we show that an assignment may not be Pareto optimal with respect to pairwise comparisons even if it is a result of a preference profile that is in pure Nash equilibrium for all utilities consistent with ordinal preferences. Finally, we present a dynamic program to compute an optimal Stackelberg strategy for two agents, where the second agent has a constant number of distinct values for the items

    THE WAIT-AND-SEE OPTION IN ASCENDING PRICE AUCTIONS

    Get PDF
    Cake-cutting protocols aim at dividing a ``cake'' (i.e., a divisible resource) and assigning the resulting portions to several players in a way that each of the players feels to have received a ``fair'' amount of the cake. An important notion of fairness is envy-freeness: No player wishes to switch the portion of the cake received with another player's portion. Despite intense efforts in the past, it is still an open question whether there is a \emph{finite bounded} envy-free cake-cutting protocol for an arbitrary number of players, and even for four players. We introduce the notion of degree of guaranteed envy-freeness (DGEF) as a measure of how good a cake-cutting protocol can approximate the ideal of envy-freeness while keeping the protocol finite bounded (trading being disregarded). We propose a new finite bounded proportional protocol for any number n \geq 3 of players, and show that this protocol has a DGEF of 1 + \lceil (n^2)/2 \rceil. This is the currently best DGEF among known finite bounded cake-cutting protocols for an arbitrary number of players. We will make the case that improving the DGEF even further is a tough challenge, and determine, for comparison, the DGEF of selected known finite bounded cake-cutting protocols.Comment: 37 pages, 4 figure

    Bargaining over a finite set of alternatives

    Get PDF
    We analyze bilateral bargaining over a finite set of alternatives. We look for “good” ordinal solutions to such problems and show that Unanimity Compromise and Rational Compromise are the only bargaining rules that satisfy a basic set of properties. We then extend our analysis to admit problems with countably infinite alternatives. We show that, on this class, no bargaining rule choosing finite subsets of alternatives can be neutral. When rephrased in the utility framework of Nash (1950), this implies that there is no ordinal bargaining rule that is finite-valued

    The basic approval voting game

    Get PDF
    We survey results about Approval Voting obtained within the standard framework of game theory. Restricting the set of strategies to undominated and sincere ballots does not help to predict Approval Voting outcomes, which is also the case under strategic equilibrium concepts such as Nash equilibrium and its usual refinements. Strong Nash equilibrium in general does not exist but predicts the election of a Condorcet winner when one exists

    How democracy resolves conflict in difficult games

    Get PDF
    Democracy resolves conflicts in difficult games like Prisoners’ Dilemma and Chicken by stabilizing their cooperative outcomes. It does so by transforming these games into games in which voters are presented with a choice between a cooperative outcome and a Pareto-inferior noncooperative outcome. In the transformed game, it is always rational for voters to vote for the cooperative outcome, because cooperation is a weakly dominant strategy independent of the decision rule and the number of voters who choose it. Such games are illustrated by 2-person and n-person public-goods games, in which it is optimal to be a free rider, and a biblical story from the book of Exodus

    Dividing Connected Chores Fairly

    Full text link

    Allocation in Practice

    Full text link
    How do we allocate scarcere sources? How do we fairly allocate costs? These are two pressing challenges facing society today. I discuss two recent projects at NICTA concerning resource and cost allocation. In the first, we have been working with FoodBank Local, a social startup working in collaboration with food bank charities around the world to optimise the logistics of collecting and distributing donated food. Before we can distribute this food, we must decide how to allocate it to different charities and food kitchens. This gives rise to a fair division problem with several new dimensions, rarely considered in the literature. In the second, we have been looking at cost allocation within the distribution network of a large multinational company. This also has several new dimensions rarely considered in the literature.Comment: To appear in Proc. of 37th edition of the German Conference on Artificial Intelligence (KI 2014), Springer LNC

    A Cryptographic Moving-Knife Cake-Cutting Protocol

    Full text link
    This paper proposes a cake-cutting protocol using cryptography when the cake is a heterogeneous good that is represented by an interval on a real line. Although the Dubins-Spanier moving-knife protocol with one knife achieves simple fairness, all players must execute the protocol synchronously. Thus, the protocol cannot be executed on asynchronous networks such as the Internet. We show that the moving-knife protocol can be executed asynchronously by a discrete protocol using a secure auction protocol. The number of cuts is n-1 where n is the number of players, which is the minimum.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    Voting and the Cardinal Aggregation of Judgments

    Get PDF
    The paper elaborates the idea that voting is an instance of the aggregation of judgments, this being a more general concept than the aggregation of preferences. To aggregate judgments one must first measure them. I show that such aggregation has been unproblematic whenever it has been based on an independent and unrestricted scale. The scales analyzed in voting theory are either context dependent or subject to unreasonable restrictions. This is the real source of the diverse 'paradoxes of voting' that would better be termed 'voting pathologies'. The theory leads me to advocate what I term evaluative voting. It can also be called utilitarian voting as it is based on having voters express their cardinal preferences. The alternative that maximizes the sum wins. This proposal operationalizes, in an election context, the abstract cardinal theories of collective choice due to Fleming and Harsanyi. On pragmatic grounds, I argue for a three valued scale for general elections

    Crowd Learning with Candidate Labeling: an EM-based Solution

    Get PDF
    Crowdsourcing is widely used nowadays in machine learning for data labeling. Although in the traditional case annotators are asked to provide a single label for each instance, novel approaches allow annotators, in case of doubt, to choose a subset of labels as a way to extract more information from them. In both the traditional and these novel approaches, the reliability of the labelers can be modeled based on the collections of labels that they provide. In this paper, we propose an Expectation-Maximization-based method for crowdsourced data with candidate sets. Iteratively the likelihood of the parameters that model the reliability of the labelers is maximized, while the ground truth is estimated. The experimental results suggest that the proposed method performs better than the baseline aggregation schemes in terms of estimated accuracy.BES-2016-078095 SVP-2014-068574 IT609-13 TIN2016-78365-
    corecore