2,501 research outputs found

    Dirac phase leptogenesis

    Full text link
    I present here a concise summary of the preprint arXiv:0707.3024, written in collaboration with A. Anisimov and P. Di Bari. There we discuss leptogenesis when {\em CP} violation stems exlusively from the Dirac phase in the PMNS mixing matrix. Under this assumption it turns out that the situation is very constrained when a hierarchical heavy right-handed (RH) neutrino spectrum is considered: the allowed regions are small and the final asymmetry depends on the initial conditions. On the other hand, for a quasi-degenerate spectrum of RH neutrinos, the {\em CP} asymmetry can be enhanced and the situation becomes much more favorable, with no dependence on the initial conditions. Interestingly, in the extreme case of resonant leptogenesis, in order to match the observed baryon asymmetry of the Universe, we obtain a lower bound on \sin \q_{13} which depends on the lightest active neutrino mass m_1.Comment: 3 pages, 2 figures, contribution to the proceedings of the TAUP 07 conference, Sep. 11-15, Sendai, Japa

    Gravitational-Wave Inspiral of Compact Binary Systems to 7/2 Post-Newtonian Order

    Get PDF
    The inspiral of compact binaries, driven by gravitational-radiation reaction, is investigated through 7/2 post-Newtonian (3.5PN) order beyond the quadrupole radiation. We outline the derivation of the 3.5PN-accurate binary's center-of-mass energy and emitted gravitational flux. The analysis consistently includes the relativistic effects in the binary's equations of motion and multipole moments, as well as the contributions of tails, and tails of tails, in the wave zone. However the result is not fully determined because of some physical incompleteness, present at the 3PN order, of the model of point-particle and the associated Hadamard-type self-field regularization. The orbital phase, whose prior knowledge is crucial for searching and analyzing the inspiral signal, is computed from the standard energy balance argument.Comment: 12 pages, version which includes the correction of an Erratum to be published in Phys. Rev. D (2005

    On the Role of Low-Energy CP Violation in Leptogenesis

    Full text link
    The link between low-energy CP violation and leptogenesis became more accessible with the understanding of flavor effects. However, a definite well-motivated model where such a link occurs was still lacking. Adjoint SU(5) is a simple grand unified theory where neutrino masses are generated through the Type I and Type III seesaw mechanisms, and the lepton asymmetry is generated by the fermionic triplet responsible for the Type III seesaw. We focus exclusively on the case of inverted hierarchy for neutrinos, and we show that successful flavored leptogenesis in this theory strongly points towards low-energy CP violation. Moreover, since the range of allowed masses for the triplet is very restricted, we find that the discovery at the LHC of new states present in the theory, together with proton decay and unification of gauge couplings, can conspire to provide a hint in favor of leptogenesis.Comment: 12 pages, 6 figure

    Health systems analysis of eye care services in Zambia: evaluating progress towards VISION 2020 goals.

    Get PDF
    BACKGROUND: VISION 2020 is a global initiative launched in 1999 to eliminate avoidable blindness by 2020. The objective of this study was to undertake a situation analysis of the Zambian eye health system and assess VISION 2020 process indicators on human resources, equipment and infrastructure. METHODS: All eye health care providers were surveyed to determine location, financing sources, human resources and equipment. Key informants were interviewed regarding levels of service provision, management and leadership in the sector. Policy papers were reviewed. A health system dynamics framework was used to analyse findings. RESULTS: During 2011, 74 facilities provided eye care in Zambia; 39% were public, 37% private for-profit and 24% owned by Non-Governmental Organizations. Private facilities were solely located in major cities. A total of 191 people worked in eye care; 18 of these were ophthalmologists and eight cataract surgeons, equivalent to 0.34 and 0.15 per 250,000 population, respectively. VISION 2020 targets for inpatient beds and surgical theatres were met in six out of nine provinces, but human resources and spectacles manufacturing workshops were below target in every province. Inequalities in service provision between urban and rural areas were substantial. CONCLUSION: Shortage and maldistribution of human resources, lack of routine monitoring and inadequate financing mechanisms are the root causes of underperformance in the Zambian eye health system, which hinder the ability to achieve the VISION 2020 goals. We recommend that all VISION 2020 process indicators are evaluated simultaneously as these are not individually useful for monitoring progress

    Gravitational waves from black hole binary inspiral and merger: The span of third post-Newtonian effective-one-body templates

    Full text link
    We extend the description of gravitational waves emitted by binary black holes during the final stages of inspiral and merger by introducing in the third post-Newtonian (3PN) effective-one-body (EOB) templates seven new ``flexibility'' parameters that affect the two-body dynamics and gravitational radiation emission. The plausible ranges of these flexibility parameters, notably the parameter characterising the fourth post-Newtonian effects in the dynamics, are estimated. Using these estimates, we show that the currently available standard 3PN bank of EOB templates does ``span'' the space of signals opened up by all the flexibility parameters, in that their maximized mutual overlaps are larger than 96.5%. This confirms the effectualness of 3PN EOB templates for the detection of binary black holes in gravitational-wave data from interferometric detectors. The possibility to drastically reduce the number of EOB templates using a few ``universal'' phasing functions is suggested.Comment: 23 pages, 3 figures, 4 tables, with revtex4, Minor clarifications, Final published versio

    Tail-induced spin-orbit effect in the gravitational radiation of compact binaries

    Full text link
    Gravitational waves contain tail effects which are due to the back-scattering of linear waves in the curved space-time geometry around the source. In this paper we improve the knowledge and accuracy of the two-body inspiraling post-Newtonian (PN) dynamics and gravitational-wave signal by computing the spin-orbit terms induced by tail effects. Notably, we derive those terms at 3PN order in the gravitational-wave energy flux, and 2.5PN and 3PN orders in the wave polarizations. This is then used to derive the spin-orbit tail effects in the phasing through 3PN order. Our results can be employed to carry out more accurate comparisons with numerical-relativity simulations and to improve the accuracy of analytical templates aimed at describing the whole process of inspiral, merger and ringdown.Comment: Minor corrections. To be published in Physical Review

    Time-symmetric initial data for binary black holes in numerical relativity

    Full text link
    We look for physically realistic initial data in numerical relativity which are in agreement with post-Newtonian approximations. We propose a particular solution of the time-symmetric constraint equation, appropriate to two momentarily static black holes, in the form of a conformal decomposition of the spatial metric. This solution is isometric to the post-Newtonian metric up to the 2PN order. It represents a non-linear deformation of the solution of Brill and Lindquist, i.e. an asymptotically flat region is connected to two asymptotically flat (in a certain weak sense) sheets, that are the images of the two singularities through appropriate inversion transformations. The total ADM mass M as well as the individual masses m_1 and m_2 (when they exist) are computed by surface integrals performed at infinity. Using second order perturbation theory on the Brill-Lindquist background, we prove that the binary's interacting mass-energy M-m_1-m_2 is well-defined at the 2PN order and in agreement with the known post-Newtonian result.Comment: 27 pages, to appear in Phys. Rev.

    Innermost circular orbit of binary black holes at the third post-Newtonian approximation

    Full text link
    The equations of motion of two point masses have recently been derived at the 3PN approximation of general relativity. From that work we determine the location of the innermost circular orbit or ICO, defined by the minimum of the binary's 3PN energy as a function of the orbital frequency for circular orbits. We find that the post-Newtonian series converges well for equal masses. Spin effects appropriate to corotational black-hole binaries are included. We compare the result with a recent numerical calculation of the ICO in the case of two black holes moving on exactly circular orbits (helical symmetry). The agreement is remarkably good, indicating that the 3PN approximation is adequate to locate the ICO of two black holes with comparable masses. This conclusion is reached with the post-Newtonian expansion expressed in the standard Taylor form, without using resummation techniques such as Pad\'e approximants and/or effective-one-body methods.Comment: 21 pages, to appear in Phys. Rev. D (spin effects appropriate to corotational black-hole binaries are included; discussion on the validity of the approximation is added

    Minimal Lepton Flavour Violation and Leptogenesis with exclusively low-energy CP Violation

    Full text link
    We study the implications of a successful leptogenesis within the framework of Minimal Lepton Flavour Violation combined with radiative resonant leptogenesis and the PMNS matrix being the only source of CP violation, which can be obtained provided flavour effects are taken into account. We find that the right amount of the baryon asymmetry of the universe can be generated under the conditions of a normal hierarchy of the light neutrino masses, a non-vanishing Majorana phase, sin(theta_{13})>0.13 and m_{nu,lightest}<0.04 eV. If this is fulfilled, we find strong correlations among ratios of charged LFV processes.Comment: published in JHEP, small change

    The Statistical Mechanics of Horizons and Black Hole Thermodynamics

    Get PDF
    Although we know that black holes are characterized by a temperature and an entropy, we do not yet have a satisfactory microscopic ``statistical mechanical'' explanation for black hole thermodynamics. I describe a new approach that attributes the thermodynamic properties to ``would-be gauge'' degrees of freedom that become dynamical on the horizon. For the (2+1)-dimensional black hole, this approach gives the correct entropy. (Talk given at the Pacific Conference on Gravitation and Cosmology, Seoul, February 1996.)Comment: 11 pages, LaTe
    corecore