10 research outputs found

    (EIN)FACH? : Komplexität, Wissen, Fortschritt und die Grenzen der Germanistik

    Get PDF
    Spätestens seit den gesellschaftlichen Modernisierungsschüben in den sechziger Jahren identifiziert auch die Germanistik Erkenntnis- und Wissenszuwachs, ja allgemeiner den "Fortschritt" ihres Fachs, mit Komplexitätserhöhung. Vor diesem Hintergrund erscheint es mir wenig plausibel, die seitdem erfolgten inneren Ausdifferenzierungen und interdisziplinären Grenzüberschreitungen als durch Identitätsverlust, Zerstreuung und Desintegration gekennzeichnete Niedergangsszenarien zu beschreiben. Die Veränderungen gehorchen der immanenten Logik germanistischer Forschung, einer "disziplinierten", auf Leistung ausgerichteten, an kooperativen Großforschungsvorhaben partizipierenden Wissensproduktion

    StearoylCoA Desaturase-5: A Novel Regulator of Neuronal Cell Proliferation and Differentiation

    Get PDF
    Recent studies have demonstrated that human stearoylCoA desaturase-1 (SCD1), a Δ9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids, controls the rate of lipogenesis, cell proliferation and tumorigenic capacity in cancer cells. However, the biological function of stearoylCoA desaturase-5 (SCD5), a second isoform of human SCD that is highly expressed in brain, as well as its potential role in human disease, remains unknown. In this study we report that the constitutive overexpression of human SCD5 in mouse Neuro2a cells, a widely used cell model of neuronal growth and differentiation, displayed a greater n-7 MUFA-to-SFA ratio in cell lipids compared to empty-vector transfected cells (controls). De novo synthesis of phosphatidylcholine and cholesterolesters was increased whereas phosphatidylethanolamine and triacylglycerol formation was reduced in SCD5-expressing cells with respect to their controls, suggesting a differential use of SCD5 products for lipogenic reactions. We also observed that SCD5 expression markedly accelerated the rate of cell proliferation and suppressed the induction of neurite outgrowth, a typical marker of neuronal differentiation, by retinoic acid indicating that the desaturase plays a key role in the mechanisms of cell division and differentiation. Critical signal transduction pathways that are known to modulate these processes, such epidermal growth factor receptor (EGFR)Akt/ERK and Wnt, were affected by SCD5 expression. Epidermal growth factor-induced phosphorylation of EGFR, Akt and ERK was markedly blunted in SCD5-expressing cells. Furthermore, the activity of canonical Wnt was reduced whereas the non-canonical Wnt was increased by the presence of SCD5 activity. Finally, SCD5 expression increased the secretion of recombinant Wnt5a, a non-canonical Wnt, whereas it reduced the cellular and secreted levels of canonical Wnt7b. Our data suggest that, by a coordinated modulation of key lipogenic pathways and transduction signaling cascades, SCD5 participates in the regulation of neuronal cell growth and differentiation

    'Gelegenheitspublikation'

    No full text
    Andres J, Rühl M, Walter AE. 'Gelegenheitspublikation'. In: Binczek N, Dembeck T, Schäfer J, eds. Handbuch Medien der Literatur. Berlin/Boston: De Gruyter; 2013: 441; 453-458

    Delta6-desaturase (FADS2) deficiency unveils the role of omega3- and omega6-polyunsaturated fatty acids

    No full text
    Mammalian cell viability is dependent on the supply of the essential fatty acids (EFAs) linoleic and alpha-linolenic acid. EFAs are converted into omega3- and omega6-polyunsaturated fatty acids (PUFAs), which are essential constituents of membrane phospholipids and precursors of eicosanoids, anandamide and docosanoids. Whether EFAs, PUFAs and eicosanoids are essential for cell viability has remained elusive. Here, we show that deletion of delta6-fatty acid desaturase (FADS2) gene expression in the mouse abolishes the initial step in the enzymatic cascade of PUFA synthesis. The lack of PUFAs and eicosanoids does not impair the normal viability and lifespan of male and female fads2 -/- mice, but causes sterility. We further provide the molecular evidence for a pivotal role of PUFA-substituted membrane phospholipids in Sertoli cell polarity and blood-testis barrier, and the gap junction network between granulosa cells of ovarian follicles. The fads2 -/- mouse is an auxotrophic mutant. It is anticipated that FADS2 will become a major focus in membrane, haemostasis, inflammation and atherosclerosis research

    Cytochrome b (5) null mouse: a new model for studying inherited skin disorders and the role of unsaturated fatty acids in normal homeostasis

    Get PDF
    Microsomal cytochrome b (5) is a ubiquitous, 15.2 kDa haemoprotein implicated in a number of cellular processes such as fatty acid desaturation, drug metabolism, steroid hormone biosynthesis and methaemoglobin reduction. As a consequence of these functions this protein has been considered essential for life. Most of the ascribed functions of cytochrome b (5), however, stem from in vitro studies and for this reason we have carried out a germline deletion of this enzyme. We have unexpectedly found that cytochrome b (5) null mice were viable and fertile, with pups being born at expected Mendelian ratios. However, a number of intriguing phenotypes were identified, including altered drug metabolism, methaemoglobinemia and disrupted steroid hormone homeostasis. In addition to these previously identified roles for this protein, cytochrome b (5) null mice displayed skin defects closely resembling those observed in autosomal recessive congenital ichthyosis and retardation of neonatal development, indicating that this protein, possibly as a consequence of its role in the de novo biosynthesis of unsaturated fatty acids, plays a central role in skin development and neonatal nutrition. Results from fatty acid profile analysis of several tissues suggest that cytochrome b (5) plays a role controlling saturated/unsaturated homeostasis. These data demonstrate that regional concentrations of unsaturated fatty acids are controlled by endogenous metabolic pathways and not by diet alone

    Is hepatic lipogenesis fundamental for NAFLD/NASH? A focus on the nuclear receptor coactivator PGC-1β

    No full text
    corecore