9 research outputs found

    Ecological sensitivity: a biospheric view of climate change

    Get PDF
    Climate change is often characterized in terms of climate sensitivity, the globally averaged temperature rise associated with a doubling of the atmospheric CO2 (equivalent) concentration. In this study, we develop and apply two new ecological sensitivity metrics, analogs of climate sensitivity, to investigate the potential degree of plant community changes over the next three centuries. We use ten climate simulations from the Intergovernmental Panel on Climate Change Fourth Assessment Report, with climate sensitivities from 2–4°C. The concept of climate sensitivity depends upon the continuous nature of the temperature field across the Earth’s surface. For this research, the bridge between climate change and biospheric change predictions is provided by the Equilibrium Vegetation Ecology model (EVE), which simulates a continuous description of the Earth’s terrestrial plant communities as a function of climate. The ecosensitivity metrics applied to the results of EVE simulations at the end of the twenty-first century result in 49% of the Earth’s land surface area undergoing plant community changes and 37% of the world’s terrestrial ecosystems undergoing biome-scale changes. EVE is an equilibrium model, and, although rates of ecological change are not addressed, the resultant ecological sensitivity projections provide an estimate of the degree of species turnover that must occur for ecosystems to be in equilibrium with local climates. Regardless of equilibrium timescales, the new metrics highlight the Earth’s degree of ecological sensitivity while identifying ecological “hotspots” in the terrestrial biosphere’s response to projected climate changes over the next three centuries

    Late Cretaceous climate, vegetation and ocean interactions

    No full text

    Ultrasonic Characterization of Fatigue Behavior in Metal-Matrix Composites

    No full text
    In the past decades, the incorporation of ceramic reinforcement in metal-matrix composites (MMC’s) brought about considerable improvements in elastic modulus, strength, wear resistance, structural efficiency, reliability and control of physical properties (e.g. density and coefficient of thermal expansion) thereby providing for improved mechanical performance in comparison to the unreinforced matrix [1–4]. S-N curves for materials such as steels are available elsewhere [5–6] whereas are limited for MMC’s. Studies on the elastic constants behavior for MMC’s as a function of temperature, volume fractions of reinforcement and applied stresses had already been conducted [7–8]. However, the fatigue behavior of elastic constants in MMC’s is not well understood. Further, the trend now is aimed at nondestructive evaluation (NDE) of materials which in the past years gained significant attention over the conventional destructive tests since the former is capable of determining the usefulness, serviceability or quality of a part or material without limiting its usefulness, which is not possible in the latter’s case [9–10]. In view of the above discussion, a result of the study on the fatigue behavior and ultrasonic characterization of monolithic aluminum and aluminum MMC’s will be discussed here

    Ecological sensitivity: a biospheric view of climate change

    Get PDF
    Climate change is often characterized in terms of climate sensitivity, the globally averaged temperature rise associated with a doubling of the atmospheric CO2 (equivalent) concentration. In this study, we develop and apply two new ecological sensitivity metrics, analogs of climate sensitivity, to investigate the potential degree of plant community changes over the next three centuries. We use ten climate simulations from the Intergovernmental Panel on Climate Change Fourth Assessment Report, with climate sensitivities from 2–4°C. The concept of climate sensitivity depends upon the continuous nature of the temperature field across the Earth’s surface. For this research, the bridge between climate change and biospheric change predictions is provided by the Equilibrium Vegetation Ecology model (EVE), which simulates a continuous description of the Earth’s terrestrial plant communities as a function of climate. The ecosensitivity metrics applied to the results of EVE simulations at the end of the twenty-first century result in 49% of the Earth’s land surface area undergoing plant community changes and 37% of the world’s terrestrial ecosystems undergoing biome-scale changes. EVE is an equilibrium model, and, although rates of ecological change are not addressed, the resultant ecological sensitivity projections provide an estimate of the degree of species turnover that must occur for ecosystems to be in equilibrium with local climates. Regardless of equilibrium timescales, the new metrics highlight the Earth’s degree of ecological sensitivity while identifying ecological “hotspots” in the terrestrial biosphere’s response to projected climate changes over the next three centuries

    Conservation status of freshwater mussels in Europe: state of the art and future challenges

    No full text
    Freshwater mussels of the Order Unionida provide important ecosystem functions and services, yet many of their populations are in decline. We comprehensively review the status of the 16 currently recognized species in Europe, collating for the first time their life-history traits, distribution, conservation status, habitat preferences, and main threats in order to suggest future management actions. In northern, central, and eastern Europe, a relatively homogeneous species composition is found in most basins. In southern Europe, despite the lower species richness, spatially restricted species make these basins a high conservation priority. Information on freshwater mussels in Europe is unevenly distributed with considerable differences in data quality and quantity among countries and species. To make conservation more effective in the future, we suggest greater international cooperation using standardized protocols and methods to monitor and manage European freshwater mussel diversity. Such an approach will not only help conserve this vulnerable group but also, through the protection of these important organisms, will offer wider benefits to freshwater ecosystems. © 2016 Cambridge Philosophical Societ
    corecore