323 research outputs found

    Temperature- and doping-dependent nanoscale Schottky barrier height at the Au/Nb:SrTiO3interface

    Get PDF
    We use ballistic electron emission microscopy to investigate prototypical Au/Nb-doped SrTiO3(NSTO) Schottky barrier diodes for different temperatures and doping levels. To this end, ultrathin Au overlayers are thermally evaporated onto TiO2-terminated NSTO single crystal substrates. We show that at room temperature, regardless of the nominal doping, rectification is controlled by a spatially inhomogeneous Schottky barrier height (SBH), which varies on a length scale of tens of nanometers according to a Gaussian distribution with a mean value of 1.29-1.34 eV and the standard deviation in the range of 80-100 meV. At lower temperatures, however, doping effects become relevant. In particular, junctions with a low Nb content of 0.01 and 0.05 wt. % show an 3c300 meV decrease in the mean SBH from room temperature to 80 K, which can be explained by an electrostatic analysis assuming a temperature-dependent dielectric permittivity for NSTO. In contrast, this model fails to predict the weaker temperature dependence of SBH for junctions based on 0.5 wt. % NSTO. Our nanoscale investigation demands to reassess conventional models for the NSTO polarizability in high-intensity electric fields. Furthermore, it contributes to the comprehension and prediction of transport in metal/SrTiO3junctions and devices

    Highly effective and isotropic pinning in epitaxial Fe(Se,Te) thin films grown on CaF2 substrates

    Full text link
    We report on the isotropic pinning obtained in epitaxial Fe(Se,Te) thin films grown on CaF2 (001) substrate. High critical current density values larger than 1 MA/cm2 in self field in liquid helium are reached together with a very weak dependence on the magnetic field and a complete isotropy. Analysis through Transmission Electron Microscopy evidences the presence of defects looking like lattice disorder at a very small scale, between 5 and 20 nm, which are thought to be responsible for such isotropic behavior in contrast to what observed on SrTiO3, where defects parallel to the c-axis enhance pinning in that directio

    Anisotropic critical currents in FeSe0.5Te0.5 films and the influence of neutron irradiation

    Full text link
    We report on measurements of the superconducting properties of FeSe05Te05 thin films grown on lanthanum aluminate. The films have high transition temperatures (above 19 K) and sharp resistive transitions in fields up to 15 T. The temperature dependence of the upper critical field and the irreversibility lines are steep and anisotropic, as recently reported for single crystals. The critical current densities, assessed by magnetization measurements in a vector VSM, were found to be well above 10^9 Am-2 at low temperatures. In all samples, the critical current as a function of field orientation has a maximum, when the field is oriented parallel to the film surface. The maximum indicates the presence of correlated pinning centers. A minimum occurs in three films, when the field is applied perpendicular to the film plane. In the forth film, instead, a local maximum caused by c-axis correlated pinning centers was found at this orientation. The irradiation of two films with fast neutrons did not change the properties drastically, where a maximum enhancement of the critical current by a factor of two was found

    Tc=21K in epitaxial FeSe0.5Te0.5 thin films with biaxial compressive strain

    Full text link
    High purity epitaxial FeSe0.5Te0.5 thin films with different thickness were grown by Pulsed Laser Ablation on different substrates. By varying the film thickness, Tc up to 21K were observed, significantly larger than the bulk value. Structural analyses indicated that the a axis changes significantly with the film thickness and is linearly related to the Tc. The latter result indicates the important role of the compressive strain in enhancing Tc. Tc is also related to both the Fe-(Se,Te) bond length and angle, suggesting the possibility of further enhancement

    Microscopic analysis of the chemical reaction between Fe(Te,Se) thin films and underlying CaF2_2

    Full text link
    To understand the chemical reaction at the interface of materials, we performed a transmission electron microscopy (TEM) observation in four types of Fe(Te,Se) superconducting thin films prepared on different types of substrates: CaF2 substrate, CaF2 substrate with a CaF2 buffer layer, CaF2 substrate with a FeSe buffer layer, and a LaAlO3 substrate with a CaF2 buffer layer. Based on the energy-dispersive X-ray spectrometer (EDX) analysis, we found possible interdiffusion between fluorine and selenium that has a strong influence on the superconductivity in Fe(Te,Se) films. The chemical interdiffusion also plays a significant role in the variation of the lattice parameters. The lattice parameters of the Fe(Te,Se) thin films are primarily determined by the chemical substitution of anions, and the lattice mismatch only plays a secondary role.Comment: 30 pages, 9 figur

    Thermal properties of SmFeAs(O1-xFx) as probe of the interplay between electrons and phonons

    Full text link
    A comparative study of thermal properties of SmFeAsO, SmFeAs(O0.93F0.07) and SmFeAs(O0.85F0.15) samples is presented. Specific heat and thermal conductivity show clear evidences of the spin density wave (SDW) ordering below TSDW 135 K in undoped SmFeAsO. At low level of F-doping, SmFeAs(O0.93F0.07), SDW ordering is suppressed and superconducting features are not yet optimally developed in both specific heat and thermal conductivity. At optimal level of F-doping SmFeAs(O0.85F0.15) anomalies related to the superconducting transition are well noticeable. By a compared analysis of doped and undoped samples we conclude that, despite F-doping modifies definitely the electronic ground state, it does not substantially alter phonon and electron parameters, like phonon modes, Sommerfeld coefficient, electro-phonon coupling. The analysis of the thermal conductivity curves provides an evaluation of SDW and superconducting energy gap, showing that phonons can suitably probe features of electronic ground state

    Demography of the bottlenose dolphin Tursiops truncatus (Mammalia: Delphinidae) in the Eastern Ligurian Sea (NW Mediterranean): quantification of female reproductive parameters

    Get PDF
    AbstractThe reproductive histories of 41 adult bottlenose dolphin females were analysed using photo-identification data collected between 2006 and 2014 in four sub-areas of the eastern Ligurian Sea (northwest Mediterranean). The Rapallo sub-area revealed the highest (highly significant) frequency of encounters (per unit effort) of reproductive females in association with young individuals, therefore emerging as a candidate nursery area in the region. The estimated fertility rate of adult females ranged between 290 and 407 births per 1000 individuals per year, higher than that of other known bottlenose dolphin populations, with a calving interval between 2.45 and 3.5 years. These results will be useful for projecting future trends of this (sub)population

    Influence of free charge carrier density on the magnetic behavior of (Zn,Co)O thin film studied by Field Effect modulation of magnetotransport

    Get PDF
    The origin of (ferro)magnetic ordering in transition metal doped ZnO is a still open question. For applications it is fundamental to establish if it arises from magnetically ordered impurity clusters embedded into the semiconducting matrix or if it originates from ordering of magnetic ions dilute into the host lattice. In this latter case, a reciprocal effect of the magnetic exchange on the charge carriers is expected, offering many possibilities for spintronics applications. In this paper we report on the relationship between magnetic properties and free charge density investigated by using Zinc oxide based field effect transistors, in which the charge carrier density is modulated by more than 4 order of magnitude, from 10(16) to 10(20) e(-)/cm(3). The magnetotransport properties are employed to probe the magnetic status of the channel both in pure and cobalt doped zinc oxide transistors. We find that it is widely possible to control the magnetic scattering rates by field effect. We believe that this finding is a consequence of the modulation of magnetization and carrier spin polarization by the electric field. The observed effects can be explained by the change in size of bound magnetic polarons that induces a percolation magnetic ordering in the sample
    • …
    corecore