574 research outputs found

    Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal

    Full text link
    We show that Coherent Population Oscillations effect allows to burn a narrow spectral hole (26Hz) within the homogeneous absorption line of the optical transition of an Erbium ion-doped crystal. The large dispersion of the index of refraction associated with this hole permits to achieve a group velocity as low as 2.7m/s with a ransmission of 40%. We especially benefit from the inhomogeneous absorption broadening of the ions to tune both the transmission coefficient, from 40% to 90%, and the light group velocity from 2.7m/s to 100m/s

    Proton Sea Quark Flavour Asymmetry and Roper Resonance

    Full text link
    We study the proton and the Roper resonance together with the meson cloud model, by constructing a Hamiltonian matrix and solving the eigenvalue equation. The proton sea quark flavour asymmetry and some properties of the Roper resonance are thus reproduced in one scheme

    Principle of Balance and the Sea Content of the Proton

    Full text link
    In this study, the proton is taken as an ensemble of quark-gluon Fock states. Using the principle of balance that every Fock state should be balanced with all of the nearby Fock states (denoted as the balance model), instead of the principle of detailed balance that any two nearby Fock states should be balanced with each other (denoted as the detailed balance model), the probabilities of finding every Fock state of the proton are obtained. The balance model can be taken as a revised version of the detailed balance model, which can give an excellent description of the light flavor sea asymmetry (i.e., uˉdˉ\bar{u}\not= \bar{d}) without any parameter. In case of gggg\Leftrightarrow gg sub-processes not considered, the balance model and the detailed balance model give the same results. In case of gggg\Leftrightarrow gg sub-processes considered, there is about 10 percent difference between the results of these models. We also calculate the strange content of the proton using the balance model under the equal probability assumption.Comment: 32 latex pages, 4 ps figures, to appear in PR

    Flavor and Charge Symmetry in the Parton Distributions of the Nucleon

    Get PDF
    Recent calculations of charge symmetry violation(CSV) in the valence quark distributions of the nucleon have revealed that the dominant symmetry breaking contribution comes from the mass associated with the spectator quark system.Assuming that the change in the spectator mass can be treated perturbatively, we derive a model independent expression for the shift in the parton distributions of the nucleon. This result is used to derive a relation between the charge and flavor asymmetric contributions to the valence quark distributions in the proton, and to calculate CSV contributions to the nucleon sea. The CSV contribution to the Gottfried sum rule is also estimated, and found to be small

    Chiral Quark Model with Configuration Mixing

    Full text link
    The implications of one gluon exchange generated configuration mixing in the Chiral Quark Model (χ\chiQMgcm_{gcm}) with SU(3) and axial U(1) symmetry breakings are discussed in the context of proton flavor and spin structure as well as the hyperon β\beta-decay parameters. We find that χ\chiQMgcm_{gcm} with SU(3) symmetry breaking is able to give a satisfactory unified fit for spin and quark distribution functions, with the symmetry breaking parameters α=.4\alpha=.4, β=.7\beta=.7 and the mixing angle ϕ=20o\phi=20^o, both for NMC and the most recent E866 data. In particular, the agreement with data, in the case of GA/GV,Δ8G_A/G_V, \Delta_8, F, D, fsf_s and f3/f8f_3/f_8, is quite striking.Comment: 16 pages, LaTex, Table and Appendix adde

    Octet Baryon Magnetic Moments in the Chiral Quark Model with Configuration Mixing

    Get PDF
    The Coleman-Glashow sum-rule for magnetic moments is always fulfilled in the chiral quark model, independently of SU(3) symmetry breaking. This is due to the structure of the wave functions, coming from the non-relativistic quark model. Experimentally, the Coleman-Glashow sum-rule is violated by about ten standard deviations. To overcome this problem, two models of wave functions with configuration mixing are studied. One of these models violates the Coleman-Glashow sum-rule to the right degree and also reproduces the octet baryon magnetic moments rather accurately.Comment: 22 pages, RevTe

    The Flavor Asymmetry of the Nucleon Sea

    Get PDF
    We re-examine the effects of anti-symmetry on the anti-quarks in the nucleon sea arising from gluon exchange and pion exchange between confined quarks. While the effect is primarily to suppress anti-down relative to anti-up quarks, this is numerically insignificant for the pion terms.Comment: To appear in Phys. Rev.

    Unified description of light- and strange-baryon spectra

    Get PDF
    We present a chiral constituent quark model for light and strange baryons providing a unified description of their ground states and excitation spectra. The model relies on constituent quarks and Goldstone bosons arising as effective degrees of freedom of low-energy QCD from the spontaneous breaking of chiral symmetry. The spectra of the three-quark systems are obtained from a precise variational solution of the Schr\"odinger equation with a semirelativistic Hamiltonian. The theoretical predictions are found in close agreement with experiment.Comment: 9 pages, including 2 figure

    Pion Content of the Nucleon as seen in the NA51 Drell-Yan experiment

    Get PDF
    In a recent CERN Drell-Yan experiment the NA51 group found a strong asymmetry of uˉ\bar u and dˉ\bar d densities in the proton at x0.18x\simeq0.18. We interpret this result as a decisive confirmation of the pion-induced sea in the nucleon.Comment: 10 pages + 3 figures, Preprint KFA-IKP(TH)-1994-14 .tex file. After \enddocument a uu-encodeded Postscript file comprising the figures is appende

    Nucleon spin-flavor structure in SU(3) breaking chiral quark model

    Get PDF
    The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f3/f8f_3/f_8 and Δ3/Δ8\Delta_3/\Delta_8. Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained.Comment: 18 pages, Latex, 4 tables. Phys. Rev. D (in press, submitted/revised in June/Nov 1996
    corecore