33 research outputs found

    Measuring co-authorship and networking-adjusted scientific impact

    Get PDF
    Appraisal of the scientific impact of researchers, teams and institutions with productivity and citation metrics has major repercussions. Funding and promotion of individuals and survival of teams and institutions depend on publications and citations. In this competitive environment, the number of authors per paper is increasing and apparently some co-authors don't satisfy authorship criteria. Listing of individual contributions is still sporadic and also open to manipulation. Metrics are needed to measure the networking intensity for a single scientist or group of scientists accounting for patterns of co-authorship. Here, I define I1 for a single scientist as the number of authors who appear in at least I1 papers of the specific scientist. For a group of scientists or institution, In is defined as the number of authors who appear in at least In papers that bear the affiliation of the group or institution. I1 depends on the number of papers authored Np. The power exponent R of the relationship between I1 and Np categorizes scientists as solitary (R>2.5), nuclear (R=2.25-2.5), networked (R=2-2.25), extensively networked (R=1.75-2) or collaborators (R<1.75). R may be used to adjust for co-authorship networking the citation impact of a scientist. In similarly provides a simple measure of the effective networking size to adjust the citation impact of groups or institutions. Empirical data are provided for single scientists and institutions for the proposed metrics. Cautious adoption of adjustments for co-authorship and networking in scientific appraisals may offer incentives for more accountable co-authorship behaviour in published articles.Comment: 25 pages, 5 figure

    Three options for citation tracking: Google Scholar, Scopus and Web of Science

    Get PDF
    BACKGROUND: Researchers turn to citation tracking to find the most influential articles for a particular topic and to see how often their own published papers are cited. For years researchers looking for this type of information had only one resource to consult: the Web of Science from Thomson Scientific. In 2004 two competitors emerged – Scopus from Elsevier and Google Scholar from Google. The research reported here uses citation analysis in an observational study examining these three databases; comparing citation counts for articles from two disciplines (oncology and condensed matter physics) and two years (1993 and 2003) to test the hypothesis that the different scholarly publication coverage provided by the three search tools will lead to different citation counts from each. METHODS: Eleven journal titles with varying impact factors were selected from each discipline (oncology and condensed matter physics) using the Journal Citation Reports (JCR). All articles published in the selected titles were retrieved for the years 1993 and 2003, and a stratified random sample of articles was chosen, resulting in four sets of articles. During the week of November 7–12, 2005, the citation counts for each research article were extracted from the three sources. The actual citing references for a subset of the articles published in 2003 were also gathered from each of the three sources. RESULTS: For oncology 1993 Web of Science returned the highest average number of citations, 45.3. Scopus returned the highest average number of citations (8.9) for oncology 2003. Web of Science returned the highest number of citations for condensed matter physics 1993 and 2003 (22.5 and 3.9 respectively). The data showed a significant difference in the mean citation rates between all pairs of resources except between Google Scholar and Scopus for condensed matter physics 2003. For articles published in 2003 Google Scholar returned the largest amount of unique citing material for oncology and Web of Science returned the most for condensed matter physics. CONCLUSION: This study did not identify any one of these three resources as the answer to all citation tracking needs. Scopus showed strength in providing citing literature for current (2003) oncology articles, while Web of Science produced more citing material for 2003 and 1993 condensed matter physics, and 1993 oncology articles. All three tools returned some unique material. Our data indicate that the question of which tool provides the most complete set of citing literature may depend on the subject and publication year of a given article

    PubFocus: semantic MEDLINE/PubMed citations analytics through integration of controlled biomedical dictionaries and ranking algorithm

    Get PDF
    BACKGROUND: Understanding research activity within any given biomedical field is important. Search outputs generated by MEDLINE/PubMed are not well classified and require lengthy manual citation analysis. Automation of citation analytics can be very useful and timesaving for both novices and experts. RESULTS: PubFocus web server automates analysis of MEDLINE/PubMed search queries by enriching them with two widely used human factor-based bibliometric indicators of publication quality: journal impact factor and volume of forward references. In addition to providing basic volumetric statistics, PubFocus also prioritizes citations and evaluates authors' impact on the field of search. PubFocus also analyses presence and occurrence of biomedical key terms within citations by utilizing controlled vocabularies. CONCLUSION: We have developed citations' prioritisation algorithm based on journal impact factor, forward referencing volume, referencing dynamics, and author's contribution level. It can be applied either to the primary set of PubMed search results or to the subsets of these results identified through key terms from controlled biomedical vocabularies and ontologies. NCI (National Cancer Institute) thesaurus and MGD (Mouse Genome Database) mammalian gene orthology have been implemented for key terms analytics. PubFocus provides a scalable platform for the integration of multiple available ontology databases. PubFocus analytics can be adapted for input sources of biomedical citations other than PubMed

    during drying

    No full text
    In this study, anthocyanins in three fresh fig varieties (Ficus carica L.) cultivated in Turkey were characterised and quantified by HPLC/DAD and HPLC/MS. In addition, the carotenoid composition of Sarilop and Sarizeybek, yellow fig varieties, was determined, and then the ripening- and drying-related changes in carotenoids and surface colour of figs were monitored during conventional sun-drying. Four different anthocyanins, cyanidin-3-glucoside, cyanidin-3,5-diglucoside, cyanidin-3-rutinoside (major anthocyanin) and pelargonidin-3-glucoside, were identified in samples. Lutein, zeaxanthin, beta-cryptoxanthin and beta-carotene were carotenoids in yellow fig varieties. Approximately 80% of carotenoid compounds in yellow fig varieties degraded at the end of drying (i.e. seventh day). L (lightness), a (redness and greenness) and b (yellowness and blueness) colour parameters were measured by Hunter Lab system. Great changes in carotenoid composition and surface colour were observed at ripening stage on tree. A significant reduction in L and b values that refers to browning in figs was made in the first 3 days of drying process

    Comparison of bibliographic data sources: Implications for the robustness of university rankings

    Get PDF
    Universities are increasingly evaluated on the basis of their outputs. These are often converted to simple and contested rankings with substantial implications for recruitment, income, and perceived prestige. Such evaluation usually relies on a single data source to define the set of outputs for a university. However, few studies have explored differences across data sources and their implications for metrics and rankings at the institutional scale. We address this gap by performing detailed bibliographic comparisons between Web of Science (WoS), Scopus, and Microsoft Academic (MSA) at the institutional level and supplement this with a manual analysis of 15 universities. We further construct two simple rankings based on citation count and open access status. Our results show that there are significant differences across databases. These differences contribute to drastic changes in rank positions of universities, which are most prevalent for non-English-speaking universities and those outside the top positions in international university rankings. Overall, MSA has greater coverage than Scopus and WoS, but with less complete affiliation metadata. We suggest that robust evaluation measures need to consider the effect of choice of data sources and recommend an approach where data from multiple sources is integrated to provide a more robust data set
    corecore