129 research outputs found

    Characteristics and properties of fibres suitable for a low FODMAP diet. An overview

    Get PDF
    Background: Irritable bowel syndrome (IBS) is one of the most common gastro-intestinal disorders worldwide and is often treated by adjusting the diet of IBS patients. An increased intake of dietary fibre (DF) and a limitation of the intake of fermentable oligo-, di-,monosaccharides and polyols (FODMAP) are the two dietary adjustments which are frequently recommended for people suffering from IBS. However, one challenge of a diet low in FODMAPs is the limited number of suitable dietary fibres. Scope and approach: The aim of this overview is to identify characteristics and DFs beneficial for IBS patients by comparing the physico-chemical properties of FODMAPs and DFs. Therefore, relevant literature about DFs and FODMAPs was collected and summarised. These characteristics and the associated technological properties were used for a selection of DFs which can be used to develop food products with an increased fibre content and a lower FODMAP content while assuring the product quality expected by the consumer. Key findings and conclusions: A low fermentation rate, low osmotic activity, insolubility and a high viscosity of soluble DFs have been identified as characteristics which are beneficial independent from the type of IBS. Soluble and non-viscous DFs can be beneficial depending on the occurrence of diarrhoea and their state of hydration. This finding highlights the importance of targeting a specific type of IBS. The above mentioned characteristics and the list of suitable DFs provide a good base for the development of functional foods and for future research regarding DF supporting the needs of IBS patients

    Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine

    Get PDF
    Aims: Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results: Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions: Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases

    Dietary Supplementation with Homoarginine Preserves Cardiac Function in a Murine Model of Post-Myocardial Infarction Heart Failure

    Get PDF
    Low plasma homoarginine (HA) is an emerging biomarker for cardiovascular disease and an independent predictor of mortality in patients with heart failure. Plasma levels appear to reflect cardiac dysfunction, positively correlating with ejection fraction and inversely with circulating brain natriuretic peptide. However, whether this outcome is a bystander or cause-and-effect has yet to be established. Within the context of stroke, a direct causal relationship has been inferred because normal mice pretreated with 14 mg/L HA had a smaller stroke size. In the present study, we show for the first time that dietary supplementation with HA improves cardiac function in the setting of chronic heart failure, suggesting a novel preventive strategy and inferring that low HA levels may be inherently detrimental because of a loss of this effect

    Cross-Sectional Associations between Homoarginine, Intermediate Phenotypes, and Atrial Fibrillation in the CommunityThe Gutenberg Health Study

    Get PDF
    Homoarginine has come into the focus of interest as a biomarker for cardiovascular disease. Atrial fibrillation (AF) causes a substantial increase in morbidity and mortality. Whether circulating homoarginine is associated with occurrence or persistence of AF and may serve as a new predictive biomarker remains unknown. We measured plasma levels of homoarginine in the population-based Gutenberg health study (3761 patients included, of them 51.7% males), mean age 55.6 +/- 10.9 years-old. Associations between homoarginine and intermediate electrocardiographic and echocardiographic phenotypes and manifest AF were examined. Patients with AF (124 patients, of them 73.4% males) had a mean age 64.8 +/- 8.6 years-old compared to a mean age of 55.3 +/- 10.9 in the population without AF (p-value < 0.001) and showed a less beneficial risk factor profile. The median homoarginine levels in individuals with and without AF were 1.9 mol/L (interquartile range (IQR) 1.5-2.5) and 2.0 mol/L (IQR 1.5-2.5), respectively, p = 0.56. In multivariable-adjusted regression analyses homoarginine was not statistically significantly related to electrocardiographic variables. Among echocardiographic variables beta per standard deviation increase was -0.12 (95% confidence interval (CI) -0.23-(-0.02);p = 0.024) for left atrial area and -0.01 (95% CI -0.02-(-0.003);p = 0.013) for E/A ratio. The odds ratio between homoarginine and AF was 0.91 (95% CI 0.70-1.16;p = 0.45). In our large, population-based cross-sectional study, we did not find statistically significant correlations between lower homoarginine levels and occurrence or persistence of AF or most standard electrocardiographic phenotypes, but some moderate inverse associations with echocardiographic left atrial size and E/A. Homoarginine may not represent a strong biomarker to identify individuals at increased risk for AF. Further investigations will be needed to elucidate the role of homoarginine and cardiac function

    Deficiency of the T cell regulator Casitas B-cell lymphoma-B aggravates atherosclerosis by inducing CD8+ T cell-mediated macrophage death

    Get PDF
    The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis.The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area. Twenty weeks old Cblb−/−Apoe−/− mice showed a significant increase in plaque area in the aortic arch, where initial plaques were present. In the aortic root, a site containing advanced plaques, lesion area rose by 40%, accompanied by a dramatic change in plaque phenotype. Plaques contained fewer macrophages due to increased apoptosis, larger necrotic cores, and more CD8+ T cells. Cblb−/−Apoe−/− macrophages exhibited enhanced migration and increased cytokine production and lipid uptake. Casitas B-cell lymphoma-B deficiency increased CD8+ T cell numbers, which were protected against apoptosis and regulatory T cell-mediated suppression. IFNγ and granzyme B production was enhanced in Cblb−/−Apoe−/− CD8+ T cells, which provoked macrophage killing. Depletion of CD8+ T cells in Cblb−/−Apoe−/− bone marrow chimeras rescued the phenotype, indicating that CBL-B controls atherosclerosis mainly through its function in CD8+ T cells. Casitas B-cell lymphoma-B expression in human plaques decreases during the progression of atherosclerosis. As an important regulator of immune responses in experimental atherosclerosis, CBL-B hampers macrophage recruitment and activation during initial atherosclerosis and limits CD8+ T cell activation and CD8+ T cell-mediated macrophage death in advanced atherosclerosis, thereby preventing the progression towards high-risk plaques.Biopharmaceutic
    • …
    corecore