55 research outputs found

    A unified framework for linear thermo-visco-elastic wave propagation including the effects of stress-relaxation

    Get PDF
    We present a unified framework for the study of wave propagation in homogeneous linear thermo-visco-elastic (TVE) continua, starting from conservation laws. In free-space such media admit two thermo-compressional modes and a shear mode. We provide asymptotic approximations to the corresponding wavenumbers which facilitate the understanding of dispersion of these modes, and consider common solids and fluids as well as soft materials where creep compliance and stress relaxation are important. We further illustrate how commonly used simpler acoustic/elastic dissipative theories can be derived via particular limits of this framework. Consequently, our framework allows us to: (i) simultaneously model interfaces involving both fluids and solids and (ii) easily quantify the influence of thermal or viscous losses in a given configuration of interest. As an example, the general framework is appliedto the canonical problem of scattering from an interface between two TVE half spaces in perfect contact. To illustrate, we provide results for fluid–solid interfaces involving air, water, steel and rubber, paying particular attention to the effects of stress relaxation

    Resveratrol Prevents Endothelial Cells Injury in High-Dose Interleukin-2 Therapy against Melanoma

    Get PDF
    Immunotherapy with high-dose interleukin-2 (HDIL-2) is an effective treatment for patients with metastatic melanoma and renal cell carcinoma. However, it is accompanied by severe toxicity involving endothelial cell injury and induction of vascular leak syndrome (VLS). In this study, we found that resveratrol, a plant polyphenol with anti-inflammatory and anti-cancer properties, was able to prevent the endothelial cell injury and inhibit the development of VLS while improving the efficacy of HDIL-2 therapy in the killing of metastasized melanoma. Specifically, C57BL/6 mice were injected with B16F10 cells followed by resveratrol by gavage the next day and continued treatment with resveratrol once a day. On day 9, mice received HDIL-2. On day 12, mice were evaluated for VLS and tumor metastasis. We found that resveratrol significantly inhibited the development of VLS in lung and liver by protecting endothelial cell integrity and preventing endothelial cells from undergoing apoptosis. The metastasis and growth of the tumor in lung were significantly inhibited by HDIL-2 and HDIL-2 + resveratrol treatment. Notably, HDIL-2 + resveratrol co-treatment was more effective in inhibiting tumor metastasis and growth than HDIL-2 treatment alone. We also analyzed the immune status of Gr-1+CD11b+ myeloid-derived suppressor cells (MDSC) and FoxP3+CD4+ regulatory T cells (Treg). We found that resveratrol induced expansion and suppressive function of MDSC which inhibited the development of VLS after adoptive transfer. However, resveratrol suppressed the HDIL-2-induced expansion of Treg cells. We also found that resveratrol enhanced the susceptibility of melanoma to the cytotoxicity of IL-2-activated killer cells, and induced the expression of the tumor suppressor gene FoxO1. Our results suggested the potential use of resveratrol in HDIL-2 treatment against melanoma. We also demonstrated, for the first time, that MDSC is the dominant suppressor cell than regulatory T cell in the development of VLS

    Targeting Toll-like receptor 7/8 enhances uptake of apoptotic leukemic cells by monocyte-derived dendritic cells but interferes with subsequent cytokine-induced maturation

    Get PDF
    Therapeutic vaccination with dendritic cells (DC) is an emerging investigational therapy for eradication of minimal residual disease in acute myeloid leukemia. Various strategies are being explored in manufacturing DC vaccines ex vivo, e.g., monocyte-derived DC (MoDC) loaded with leukemia-associated antigens (LAA). However, the optimal source of LAA and the choice of DC-activating stimuli are still not well defined. Here, loading with leukemic cell preparations (harboring both unknown and known LAA) was explored in combination with a DC maturation-inducing cytokine cocktail (CC; IL-1β, IL-6, TNF-α, and PGE2) and Toll-like receptor ligands (TLR-L) to optimize uptake. Since heat shock induced apoptotic blasts were more efficiently taken up than lysates, we focused on uptake of apoptotic leukemic cells. Uptake of apoptotic blast was further enhanced by the TLR7/8-L R848 (20–30%); in contrast, CC-induced maturation inhibited uptake. CC, and to a lesser extent R848, enhanced the ability of MoDC to migrate and stimulate T cells. Furthermore, class II-associated invariant chain peptide expression was down-modulated after R848- or CC-induced maturation, indicating enhanced processing and presentation of antigenic peptides. To improve both uptake and maturation, leukemic cells and MoDC were co-incubated with R848 for 24 h followed by addition of CC. However, this approach interfered with CC-mediated MoDC maturation as indicated by diminished migratory and T cell stimulatory capacity, and the absence of IL-12 production. Taken together, our data demonstrate that even though R848 improved uptake of apoptotic leukemic cells, the sequential use of R848 and CC is counter-indicated due to its adverse effects on MoDC maturation

    Cross-talk between cd1d-restricted nkt cells and γδ cells in t regulatory cell response

    Get PDF
    CD1d is a non-classical major histocompatibility class 1-like molecule which primarily presents either microbial or endogenous glycolipid antigens to T cells involved in innate immunity. Natural killer T (NKT) cells and a subpopulation of γδ T cells expressing the Vγ4 T cell receptor (TCR) recognize CD1d. NKT and Vγ4 T cells function in the innate immune response via rapid activation subsequent to infection and secrete large quantities of cytokines that both help control infection and modulate the developing adaptive immune response. T regulatory cells represent one cell population impacted by both NKT and Vγ4 T cells. This review discusses the evidence that NKT cells promote T regulatory cell activation both through direct interaction of NKT cell and dendritic cells and through NKT cell secretion of large amounts of TGFβ, IL-10 and IL-2. Recent studies have shown that CD1d-restricted Vγ4 T cells, in contrast to NKT cells, selectively kill T regulatory cells through a caspase-dependent mechanism. Vγ4 T cell elimination of the T regulatory cell population allows activation of autoimmune CD8+ effector cells leading to severe cardiac injury in a coxsackievirus B3 (CVB3) myocarditis model in mice. CD1d-restricted immunity can therefore lead to either immunosuppression or autoimmunity depending upon the type of innate effector dominating during the infection

    Extracorporeal photophoresis increases sensitivity of monocytes from patients with graft-versus-host disease to HLA-DR-mediated cell death

    No full text
    BACKGROUND: Graft-versus-host disease (GVHD) remains a cause of long-term morbidity after allogeneic hematopoietic stem cell transplantation, and recent studies indicate that extracorporeal photophoresis (ECP) is useful for treatment of steroid-refractory GVHD although the mechanisms are unclear. Antigen-presenting cells (APCs) such as dendritic cells have a central role in GVHD, and apoptosis of APCs by HLA-DR monoclonal antibody (MoAb) has been documented in vitro and in vivo. Monocytes have been identified as precursors of dendritic cells in vivo and particularly under conditions of inflammation. STUDY DESIGN AND METHODS: This study examined whether ECP altered the survival of peripheral blood monocytes from patients with GVHD, monocyte apoptosis after engagement of HLA-DR antigens with MoAb, and monocyte apoptosis after allointeraction with primary CD4+ T lymphocytes. Samples from patients from two centers were studied. RESULTS: It is reported here that ECP induced apoptosis of monocytes over a period of at least 48 hours. ECP also clearly increased cell death of monocytes after engagement of HLA-DR antigens with MoAb. In contrast, engagement of HLA-DR by allointeraction failed to induce significant cell death of monocytes, and this was unaltered by ECP treatment. CONCLUSION: These data reveal that monocytes from patients with GVHD are sensitive to HLA-DR-mediated apoptosis and that ECP treatment increases sensitivity to both spontaneous and HLA-DR-mediated apoptosis. Therefore, ECP treatment in combination with HLA-DR MoAbs could rapidly deplete monocytes and thereby reduce the contribution of monocyte-derived dendritic cells to GVHD
    corecore