32 research outputs found

    La voie Nrf2 en pathologie respiratoire

    Get PDF
    Airways are continually exposed to multiple inhaled oxidants and protect themselves with cellular and extracellular antioxidants throughout the epithelial lining fluid and tissues. Oxidative stress, resulting from the increased oxidative burden and decreased level of antioxidant proteins, is involved in cellular and tissue damage related to the pathogenesis of many acute and chronic respiratory diseases. Evidence suggested that nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor that controls antioxidant response element (ARE)-regulated antioxidant and cytoprotective genes has an essential protective role in the lungs against oxidative airway diseases. Therefore, Nrf2 promises to be an attractive therapeutic target for intervention and prevention strategies in respiratory diseases. We have reviewed major findings on the mechanisms of lung protection against oxidative stress by Nrf2 and the current literature suggesting that Nrf2 is a valuable therapeutic target

    NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease.

    Get PDF
    Several convergent destructive mechanisms such as oxidative stress, alveolar cell apoptosis, extracellular matrix proteolysis and chronic inflammation contribute to chronic obstructive pulmonary disease (COPD) development. Evidence suggests that oxidative stress contributes to the pathophysiology of COPD, particularly during exacerbations. Nuclear factor erythroid-2-related factor 2 (NRF2), a transcription factor expressed predominantly in epithelium and alveolar macrophages, has an essential protective role in the lungs through the activation of antioxidant response element-regulated antioxidant and cytoprotective genes. Animal models and human studies have identified NRF2 and several NRF2 target genes as a protective system against inflammation and oxidative stress from cigarette smoke, a major causative factor in COPD development. Hence, NRF2 targeting might provide clinical benefit by reducing both oxidative stress and inflammation in COPD

    Nuclear factor erythroid 2-related factor 2 nuclear translocation induces myofibroblastic dedifferentiation in idiopathic pulmonary fibrosis

    Get PDF
    AIMS: Oxidants have been implicated in the pathophysiology of idiopathic pulmonary fibrosis (IPF), especially in myofibroblastic differentiation. We aimed at testing the hypothesis that nuclear factor erythroid 2-related factor 2 (Nrf2), the main regulator of endogenous antioxidant enzymes, is involved in fibrogenesis via myofibroblastic differentiation. Fibroblasts were cultured from the lungs of eight controls and eight IPF patients. Oxidants-antioxidants balance, nuclear Nrf2 expression, and fibroblast phenotype (α-smooth muscle actin and collagen I expression, proliferation, migration, and contraction) were studied under basal conditions and after Nrf2 knockdown or activation by Nrf2 or Keap1 siRNA transfection. The effects of sulforaphane (SFN), an Nrf2 activator, on the fibroblast phenotype were tested under basal and pro-fibrosis conditions (transforming growth factor β [TGF-β]). RESULTS: Decreased Nrf2 expression was associated with a myofibroblast phenotype in IPF compared with control fibroblasts. Nrf2 knockdown induced oxidative stress and myofibroblastic differentiation in control fibroblasts. Conversely, Nrf2 activation increased antioxidant defences and myofibroblastic dedifferentation in IPF fibroblasts. SFN treatment decreased oxidants, and induced Nrf2 expression, antioxidants, and myofibroblastic dedifferentiation in IPF fibroblasts. SFN inhibited TGF-β profibrotic deleterious effects in IPF and control fibroblasts and restored antioxidant defences. Nrf2 knockdown abolished SFN antifibrosis effects, suggesting that they were Nrf2 mediated. INNOVATION AND CONCLUSION: Our findings confirm that decreased nuclear Nrf2 plays a role in myofibroblastic differentiation and that SFN induces human pulmonary fibroblast dedifferentiation in vitro via Nrf2 activation. Thus, Nrf2 could be a novel therapeutic target in IPF

    Diagnosis and outcome of acute respiratory failure in immunocompromised patients after bronchoscopy

    Get PDF
    Objective: We wished to explore the use, diagnostic capability and outcomes of bronchoscopy added to noninvasive testing in immunocompromised patients. In this setting, an inability to identify the cause of acute hypoxaemic respiratory failure is associated with worse outcome. Every effort should be made to obtain a diagnosis, either with noninvasive testing alone or combined with bronchoscopy. However, our understanding of the risks and benefits of bronchoscopy remains uncertain. Patients and methods: This was a pre-planned secondary analysis of Efraim, a prospective, multinational, observational study of 1611 immunocompromised patients with acute respiratory failure admitted to the intensive care unit (ICU). We compared patients with noninvasive testing only to those who had also received bronchoscopy by bivariate analysis and after propensity score matching. Results: Bronchoscopy was performed in 618 (39%) patients who were more likely to have haematological malignancy and a higher severity of illness score. Bronchoscopy alone achieved a diagnosis in 165 patients (27% adjusted diagnostic yield). Bronchoscopy resulted in a management change in 236 patients (38% therapeutic yield). Bronchoscopy was associated with worsening of respiratory status in 69 (11%) patients. Bronchoscopy was associated with higher ICU (40% versus 28%; p<0.0001) and hospital mortality (49% versus 41%; p=0.003). The overall rate of undiagnosed causes was 13%. After propensity score matching, bronchoscopy remained associated with increased risk of hospital mortality (OR 1.41, 95% CI 1.08-1.81). Conclusions: Bronchoscopy was associated with improved diagnosis and changes in management, but also increased hospital mortality. Balancing risk and benefit in individualised cases should be investigated further
    corecore