46 research outputs found

    Control of Optical Dynamic Memory Capacity of an Atomic Bose-Einstein Condensate

    Full text link
    Light storage in an atomic Bose-Einstein condensate is one of the most practical usage of these coherent atom-optical systems. In order to make them even more practical, it is necessary to enhance our ability to inject multiple pulses into the condensate. In this paper, we report that dispersion of pulses injected into the condensate can be compensated by optical nonlinearity. In addition, we will present a brief review of our earlier results in which enhancement of light storage capacity is accomplished by utilizing multi-mode light propagation or choosing an optimal set of experimental parameters.Comment: 4 figures, 11 page

    Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity

    Get PDF
    Primary immunodeficiency disorders enable identification of genes with crucial roles in the human immune system. Here we study patients suffering from recurrent bacterial, viral and Cryptosporidium infections, and identify a biallelic mutation in the MAP3K14 gene encoding NIK (NF- B-inducing kinase). Loss of kinase activity of mutant NIK, predicted by in silico analysis and confirmed by functional assays, leads to defective activation of both canonical and non-canonical NF- B signalling. Patients with mutated NIK exhibit B-cell lymphopenia, decreased frequencies of class-switched memory B cells and hypogammaglobulinemia due to impaired B-cell survival, and impaired ICOSL expression. Although overall T-cell numbers are normal, both follicular helper and memory T cells are perturbed. Natural killer (NK) cells are decreased and exhibit defective activation, leading to impaired formation of NK-cell immunological synapses. Collectively, our data illustrate the non-redundant role for NIK in human immune responses, demonstrating that loss-of-function mutations in NIK can cause multiple aberrations of lymphoid immunity

    A global core outcome measurement set for snakebite clinical trials.

    Get PDF
    Snakebite clinical trials have often used heterogeneous outcome measures and there is an urgent need for standardisation. A globally representative group of key stakeholders came together to reach consensus on a globally relevant set of core outcome measurements. Outcome domains and outcome measurement instruments were identified through searching the literature and a systematic review of snakebite clinical trials. Outcome domains were shortlisted by use of a questionnaire and consensus was reached among stakeholders and the patient group through facilitated discussions and voting. Five universal core outcome measures should be included in all future snakebite clinical trials-mortality, WHO disability assessment scale, patient-specific functional scale, acute allergic reaction by Brown criteria, and serum sickness by formal criteria. Additional syndrome-specific core outcome measures should be used depending on the biting species. This core outcome measurement set provides global standardisation, supports the priorities of patients and clinicians, enables meta-analysis, and is appropriate for use in low-income and middle-income settings
    corecore