6,000 research outputs found

    Pulsed Beam Tests at the SANAEM RFQ Beamline

    Full text link
    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority's (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.Comment: 6 pages, 6 figures. Proceedings of the International Particle Accelerator Conference 2017 (IPAC'17), May 14-19, 2017, TUPAB015, p. 134

    Project PROMETHEUS: Design and Construction of a Radio Frequency Quadrupole at TAEK

    Full text link
    The PROMETHEUS Project is ongoing for the design and development of a 4-vane radio frequency quadrupole (RFQ) together with its H+ ion source, a low energy beam transport (LEBT) line and diagnostics section. The main goal of the project is to achieve the acceleration of the low energy ions up to 1.5 MeV by an RFQ (352 MHz) shorter than 2 meter. A plasma ion source is being developed to produce a 20 keV, 1 mA H+ beam. Simulation results for ion source, transmission and beam dynamics are presented together with analytical studies performed with newly developed RFQ design code DEMIRCI. Simulation results shows that a beam transmission 99% could be achieved at 1.7 m downstream reaching an energy of 1.5 MeV. As the first phase an Aluminum RFQ prototype, the so-called cold model, will be built for low power RF characterization. In this contribution the status of the project, design considerations, simulation results, the various diagnostics techniques and RFQ manufacturing issues are discussed.Comment: 4 pages, 8 figures, Proceedings of the 2nd International Beam Instrumentation Conference 2013 (IBIC'13), 16-19 Sep 2013, WEPC02, p. 65

    Optical characteristics of nanocrystalline AlxGa1-xN thin films deposited by hollow cathode plasma-assisted atomic layer deposition

    Get PDF
    Cataloged from PDF version of article.Gallium nitride (GaN), aluminum nitride (AlN), and AlxGa(1-x)N films have been deposited by hollow cathode plasma-assisted atomic layer deposition at 200 degrees C on c-plane sapphire and Si substrates. The dependence of film structure, absorption edge, and refractive index on postdeposition annealing were examined by x-ray diffraction, spectrophotometry, and spectroscopic ellipsometry measurements, respectively. Well-adhered, uniform, and polycrystalline wurtzite (hexagonal) GaN, AlN, and AlxGa1-xN films were prepared at low deposition temperature. As revealed by the x-ray diffraction analyses, crystallite sizes of the films were between 11.7 and 25.2 nm. The crystallite size of as-deposited GaN film increased from 11.7 to 12.1 and 14.4 nm when the annealing duration increased from 30 min to 2 h (800 degrees C). For all films, the average optical transmission was similar to 85% in the visible (VIS) and near infrared spectrum. The refractive indices of AlN and AlxGa1-xN were lower compared to GaN thin films. The refractive index of as-deposited films decreased from 2.33 to 2.02 (lambda = 550 nm) with the increased Al content x (0 400 nm). Postdeposition annealing at 900 degrees C for 2 h considerably lowered the refractive index value of GaN films (2.33-1.92), indicating a significant phase change. The optical bandgap of as-deposited GaN film was found to be 3.95 eV, and it decreased to 3.90 eV for films annealed at 800 degrees C for 30 min and 2 h. On the other hand, this value increased to 4.1 eV for GaN films annealed at 900 degrees C for 2 h. This might be caused by Ga2O3 formation and following phase change. The optical bandgap value of as-deposited AlxGa1-xN films decreased from 5.75 to 5.25 eV when the x values decreased from 1 to 0.68. Furthermore, postdeposition annealing did not affect the bandgap of Al-rich films. (C) 2014 American Vacuum Society

    Hollow cathode plasma-assisted atomic layer deposition of crystalline AIN, GaN and AI Ga1- N thin films at low temperatures

    Get PDF
    Cataloged from PDF version of article.The authors report on the use of hollow cathode plasma for low-temperature plasma-assisted atomic layer deposition (PA-ALD) of crystalline AlN, GaN and AlxGa1 xN thin films with low impurity concentrations. Depositions were carried out at 200 C using trimethylmetal precursors and NH3 or N2/H2 plasma. X-ray photoelectron spectroscopy showed the presence of 2.5–3 at.% O in AlN and 1.5–1.7 at.% O in GaN films deposited using NH3 and N2/H2 plasma, respectively. No C impurities were detected within the films. Secondary ion mass spectroscopy analyses performed on the films deposited using NH3 plasma revealed the presence of O, C (both <1 at.%), and H impurities. GIXRD patterns indicated polycrystalline thin films with wurtzite crystal structure. Hollow cathode PA-ALD parameters were optimized for AlN and GaN thin films using N2/H2 plasma. Trimethylmetal and N2/H2 saturation curves evidenced the selflimiting growth of AlN and GaN at 200 C. AlN exhibited linear growth with a growth per cycle (GPC) of 1.0 A. For GaN, the GPC decreased with the increasing number of deposition cycles, indicating ˚ substrate-enhanced growth. The GPC calculated from a 900-cycle GaN deposition was 0.22 A. ˚ Ellipsometric spectra of the samples were modeled using the Cauchy dispersion function, from which the refractive indices of 59.2 nm thick AlN and 20.1 nm thick GaN thin films were determined to be 1.94 and 2.17 at 632 nm, respectively. Spectral transmission measurements of AlN, GaN and AlxGa1 xN thin films grown on double side polished sapphire substrates revealed near-ideal visible transparency with minimal absorption. Optical band edge values of the AlxGa1 xN films shifted to lower wavelengths with the increasing Al content, indicating the tunability of band edge values with the alloy composition

    Development of a supervisory controller for residential energy management problems

    Get PDF
    In recent years, the infrastructure that supplies energy to residential areas has started to evolve into a multi-source system, just like in automotive industry in which hybrid electric vehicles (HEVs) have been replacing conventional gasoline vehicles. Multi energy source systems considered as a potential solution for carbon emission problems despite their challenges in their operation due to increased complexity. In this paper, a control design approach successfully applied in the automotive industry is used to solve a residential energy management problem. First, a dynamic programming method is applied to obtain optimal control actions for the representative demand profiles and then by using these results, a causal supervisory controller is developed. It is found that the developed baseline controller performs 1-2% better daily in its initial form in terms of operational costs, compared to available heuristic strategies. © 2012 AACC American Automatic Control Council)

    Low-Temperature Deposition of Hexagonal Boron Nitride via Sequential Injection of Triethylboron and N2/H2 Plasma

    Get PDF
    Cataloged from PDF version of article.Hexagonal boron nitride (hBN) thin films were deposited on silicon and quartz substrates using sequential exposures of triethylboron and N 2 /H 2 plasma in a hollow-cathode plasma- assisted atomic layer deposition reactor at low temperatures ( ≤ 450 ° C). A non-saturating film deposition rate was observed for substrate temperatures above 250 ° C. BN films were charac- terized for their chemical composition, crystallinity, surface morphology, and optical properties. X-ray photoelectron spec- troscopy (XPS) depicted the peaks of boron, nitrogen, carbon, and oxygen at the film surface. B 1s and N 1s high-resolution XPS spectra confirmed the presence of BN with peaks located at 190.8 and 398.3 eV, respectively. As deposited films were polycrystalline, single-phase hBN irrespective of the deposition temperature. Absorption spectra exhibited an optical band edge at ~ 5.25 eV and an optical transmittance greater than 90% in the visible region of the spectrum. Refractive index of the hBN film deposited at 450 ° C was 1.60 at 550 nm, which increased to 1.64 after postdeposition annealing at 800 ° C for 30 min. These results represent the first demonstration of hBN deposi- tion using low-temperature hollow-cathode plasma-assisted sequential deposition technique. © 2014 The American Ceramic Society

    Tkachenko modes as sources of quasiperiodic pulsar spin variations

    Full text link
    We study the long wavelength shear modes (Tkachenko waves) of triangular lattices of singly quantized vortices in neutron star interiors taking into account the mutual friction between the superfluid and the normal fluid and the shear viscosity of the normal fluid. The set of Tkachenko modes that propagate in the plane orthogonal to the spin vector are weakly damped if the coupling between the superfluid and normal fluid is small. In strong coupling, their oscillation frequencies are lower and are undamped for small and moderate shear viscosities. The periods of these modes are consistent with the observed ~100-1000 day variations in spin of PSR 1828-11.Comment: 7 pages, 3 figures, uses RevTex, v2: added discussion/references, matches published versio

    Quartz Cherenkov Counters for Fast Timing: QUARTIC

    Full text link
    We have developed particle detectors based on fused silica (quartz) Cherenkov radiators read out with micro-channel plate photomultipliers (MCP-PMTs) or silicon photomultipliers (SiPMs) for high precision timing (Sigma(t) about 10-15 ps). One application is to measure the times of small angle protons from exclusive reactions, e.g. p + p - p + H + p, at the Large Hadron Collider, LHC. They may also be used to measure directional particle fluxes close to external or stored beams. The detectors have small areas (square cm), but need to be active very close (a few mm) to the intense LHC beam, and so must be radiation hard and nearly edgeless. We present results of tests of detectors with quartz bars inclined at the Cherenkov angle, and with bars in the form of an "L" (with a 90 degree corner). We also describe a possible design for a fast timing hodoscope with elements of a few square mm.Comment: 24 pages, 14 figure

    Structural, optical and electrical characteristics BaSrTiOx thin films: Effect of deposition pressure and annealing

    Get PDF
    Among perovskite oxide materials, BaSrTiOx (BST) has attracted great attention due to its potential applications in oxide-based electronics. However, reliability and efficiency of BST thin films strongly depend on the precise knowledge of the film microstructure, as well as optical and electrical properties. In the present work, BST films were deposited at room temperature using radio frequency magnetron sputtering technique. The impact of deposition pressure, partial oxygen flow, and post-deposition annealing treatment on film microstructure, surface morphology, refractive index, and dielectric constants were studied by X-ray diffraction, scanning electron microscopy, spectrophotometry, ellipsometry, photoluminescence, as well as capacitance-voltage measurements. Well-adhered and uniform amorphous films were obtained at room temperature. For all as-deposited films, the average optical transmission was ~ 85% in the VIS-NIR spectrum. The refractive indices of BST films were in the range of 1.90–2.07 (λ = 550 nm). Post-deposition annealing at 800 °C for 1 h resulted in polycrystalline thin films with increased refractive indices and dielectric constants, however reduced optical transmission values. Frequency dependent dielectric constants were found to be in the range of 46–72. However, the observed leakage current was relatively small, about 1 μA. The highest FOM values were obtained for films deposited at 0.67 Pa pressures, while charge storage capacity values increased with increased deposition pressure. Results show that room-temperature grown BST films have potential for device applications. © 2017 Elsevier B.V
    corecore