9 research outputs found

    Stochastic neighbor embedding as a tool for visualizing the encoding capability of magnetic resonance fingerprinting dictionaries

    Get PDF
    Objective: To visualize the encoding capability of magnetic resonance fingerprinting (MRF) dictionaries. Materials and methods: High-dimensional MRF dictionaries were simulated and embedded into a lower-dimensional space using t-distributed stochastic neighbor embedding (t-SNE). The embeddings were visualized via colors as a surrogate for location in low-dimensional space. First, we illustrate this technique on three different MRF sequences. We then compare the resulting embeddings and the color-coded dictionary maps to these obtained with a singular value decomposition (SVD) dimensionality reduction technique. We validate the t-SNE approach with measures based on existing quantitative measures of encoding capability using the Euclidean distance. Finally, we use t-SNE to visualize MRF sequences resulting from an MRF sequence optimization algorithm. Results: t-SNE was able to show clear differences between the color-coded dictionary maps of three MRF sequences. SVD showed smaller differences between different sequences. These findings were confirmed by quantitative measures of encoding. t-SNE was also able to visualize differences in encoding capability between subsequent iterations of an MRF sequence optimization algorithm. Discussion: This visualization approach enables comparison of the encoding capability of different MRF sequences. This technique can be used as a confirmation tool in MRF sequence optimization.Pattern Recognition and Bioinformatic

    Histogram-based standardization of intravascular optical coherence tomography images acquired from different imaging systems

    No full text
    Purpose: Intravascular optical coherence tomography (OCT) is widely used for analysis of the coronary artery disease. Its high spatial resolution allows for visualization of arterial tissue components in detail. There are different OCT systems on the market, each of which produces data characterized by its own intensity range and distribution. These differences should be taken into account for the development of image processing algorithms. In order to overcome this difference in the intensity range and distribution, we developed a framework for matching intensities based on the exact histogram matching technique. Methods: In our method, the key step for using the exact histogram matching is to determine the target histogram. For this, we proposed two schemes: a global scheme that uses a single histogram as the target histogram for all the pullbacks, and a local scheme that selects for each single image a target histogram from a predefined database. These two schemes are compared on a unique dataset containing pairs of pullbacks that were acquired shortly after each other with systems from two vendors, St. Jude and Terumo. Pullbacks were aligned according to anatomical landmarks, and a database of matched histogram pairs was created. A leave-one-out cross validation was used to compare performance of the two schemes. The matching accuracy was evaluated by comparing: (a) histograms using Euclidean (dx2) and Kolmogorov–Smirnov (dKS) distances, and (b) median intensity level within anatomical regions of interest. Results: Leave-one-out validation indicated that both matching schemes yield comparably high accuracies across the entire validation dataset. The local scheme outperforms the global scheme with marginally lower dissimilarities at both histogram level and intensity level. High visual similarity was observed when comparing the matched images to their aligned counterparts. Conclusion: Both local and global schemes are robust and produce accurate intensity matching. While local scheme performs marginally better than the global scheme, it requires a predefined histogram dataset and is more time consuming. Thus, for offline standardization of the images, the local scheme should be preferred for being more accurate. For online standardization or when another system is involved, the global scheme can be used as a simple and nearly-as-accurate alternative.Pattern Recognition and Bioinformatic

    Inter-station Intensity Standardization for Whole-Body MR Data

    Get PDF
    Purpose To develop and validate a method for performing inter-station intensity standardization in multispectral whole-body MR data. Methods Different approaches for mapping the intensity of each acquired image stack into the reference intensity space were developed and validated. The registration strategies included: “direct” registration to the reference station (Strategy 1), “progressive” registration to the neighboring stations without (Strategy 2), and with (Strategy 3) using information from the overlap regions of the neighboring stations. For Strategy 3, two regularized modifications were proposed and validated. All methods were tested on two multispectral whole-body MR data sets: a multiple myeloma patients data set (48 subjects) and a whole-body MR angiography data set (33 subjects). Results For both data sets, all strategies showed significant improvement of intensity homogeneity with respect to vast majority of the validation measures (P < 0.005). Strategy 1 exhibited the best performance, closely followed by Strategy 2. Strategy 3 and its modifications were performing worse, in majority of the cases significantly (P < 0.05). Conclusions We propose several strategies for performing inter-station intensity standardization in multispectral whole-body MR data. All the strategies were successfully applied to two types of whole-body MR data, and the “direct” registration strategy was concluded to perform the best. Magn Reson Med 77:422–433, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in MedicinePattern Recognition and Bioinformatic

    Transcriptomic Signatures Associated With Regional Cortical Thickness Changes in Parkinson’s Disease

    No full text
    Cortical atrophy is a common manifestation in Parkinson’s disease (PD), particularly in advanced stages of the disease. To elucidate the molecular underpinnings of cortical thickness changes in PD, we performed an integrated analysis of brain-wide healthy transcriptomic data from the Allen Human Brain Atlas and patterns of cortical thickness based on T1-weighted anatomical MRI data of 149 PD patients and 369 controls. For this purpose, we used partial least squares regression to identify gene expression patterns correlated with cortical thickness changes. In addition, we identified gene expression patterns underlying the relationship between cortical thickness and clinical domains of PD. Our results show that genes whose expression in the healthy brain is associated with cortical thickness changes in PD are enriched in biological pathways related to sumoylation, regulation of mitotic cell cycle, mitochondrial translation, DNA damage responses, and ER-Golgi traffic. The associated pathways were highly related to each other and all belong to cellular maintenance mechanisms. The expression of genes within most pathways was negatively correlated with cortical thickness changes, showing higher expression in regions associated with decreased cortical thickness (atrophy). On the other hand, sumoylation pathways were positively correlated with cortical thickness changes, showing higher expression in regions with increased cortical thickness (hypertrophy). Our findings suggest that alterations in the balanced interplay of these mechanisms play a role in changes of cortical thickness in PD and possibly influence motor and cognitive functions.Pattern Recognition and Bioinformatic

    Computer-aided evaluation of inflammatory changes over time on MRI of the spine in patients with suspected axial spondyloarthritis: A feasibility study

    No full text
    Background: Evaluating inflammatory changes over time on MR images of the spine in patients with suspected axial Spondyloarthritis (axSpA) can be a labor-intensive task, requiring readers to manually search for and perceptually align a set of vertebrae between two scans. The purpose of this study was to assess the feasibility of computer-aided (CA) evaluation of such inflammatory changes in a framework where scans from two time points are fused into a single color-encoded image integrated into an interactive scoring tool. Methods: For 30 patients from the SPondyloArthritis Caught Early (SPACE) cohort (back pain ≥ 3 months, ≤ 2 years, onset < 45 years), baseline and follow-up MR scans acquired 9-12 months apart were fused into a single color-encoded image through locally-rigid image registration to evaluate inflammatory changes in 23 vertebral units (VUs). Scoring was performed by two expert readers on a (-2, 2) scale using an interactive scoring tool. For comparison of direction of change (increase/decrease) indicated by an existing reference, Berlin method scores ((-3, 3) scale) of the same MR scans from a different ongoing study were used. The distributions of VU-level differences between CA readers and between the CA and Berlin methods (sign of change scores) across patients were analyzed descriptively. Patient-level agreement between CA readers was assessed by intraclass correlation coefficient (ICC). Results: Five patients were excluded from evaluation due to failed vertebrae segmentation. Patient-level inter-reader agreement ICC was 0.56 (95% CI: 0.22 to 0.78). Mean VU-level inter-reader differences across 25 patients ranged (-0.04, 0.12) with SD range (0, 0.45). Across all VUs, inter-reader differences ranged (-1, 1) in 573/575 VUs (99.7%). Mean VU-level inter-method differences across patients ranged (-0.04, 0.08) with SD range (0, 0.61). Across all VUs, inter-method differences ranged (-1, 1) in 572/575 VUs (99.5%). Conclusions: Fusion of MR scans of the spine from two time points into a single color-encoded image allows for direct visualization and measurement of inflammatory changes over time in patients with suspected axSpA.Pattern Recognition and Bioinformatic

    Co-expression Patterns between <i>ATN1</i> and <i>ATXN2</i> Coincide with Brain Regions Affected in Huntington’s Disease

    No full text
    Cytosine-adenine-guanine (CAG) repeat expansions in the coding regions of nine polyglutamine (polyQ) genes (HTT, ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, ATN1, AR, and TBP) are the cause of several neurodegenerative diseases including Huntington’s disease (HD), six different spinocerebellar ataxias (SCAs), dentatorubral-pallidoluysian atrophy, and spinobulbar muscular atrophy. The expanded CAG repeat length in the causative gene is negatively related to the age-at-onset (AAO) of clinical symptoms. In addition to the expanded CAG repeat length in the causative gene, the normal CAG repeats in the other polyQ genes can affect the AAO, suggesting functional interactions between the polyQ genes. However, there is no detailed assessment of the relationships among polyQ genes in pathologically relevant brain regions. We used gene co-expression analysis to study the functional relationships among polyQ genes in different brain regions using the Allen Human Brain Atlas (AHBA), a spatial map of gene expression in the healthy brain. We constructed co-expression networks for seven anatomical brain structures, as well as a region showing a specific pattern of atrophy in HD patients detected by magnetic resonance imaging (MRI) of the brain. In this HD-associated region, we found that ATN1 and ATXN2 were co-expressed and shared co-expression partners which were enriched for DNA repair genes. We observed a similar co-expression pattern in the frontal lobe, parietal lobe, and striatum in which this relation was most pronounced. Given that the co-expression patterns for these anatomical structures were similar to those for the HD-associated region, our results suggest that their disruption is likely involved in HD pathology. Moreover, ATN1 and ATXN2 also shared many co-expressed genes with HTT, the causative gene of HD, across the brain. Although this triangular relationship among these three polyQ genes may also be dysregulated in other polyQ diseases, stronger co-expression patterns between ATN1 and ATXN2 observed in the HD-associated region, especially in the striatum, may be more specific to HD.Pattern Recognition and Bioinformatic

    MRI Mouse Brain Data of Ischemic Lesion after Transient Middle Cerebral Artery Occlusion

    No full text
    In this data report we make available to the community a highly variable longitudinal MRI mouse brain data set of ischemic lesion after transient middle cerebral artery occlusion (tMCAo). Together with the provided semi-automated and automated segmentations, these data can be used to further improve the method proposed by Mulder et al. (2017) and also to serve as a benchmark for comparison between different approaches to segment ischemic lesions in MRI mouse brain data. It can also be used to develop and validate algorithms that further classify the stroke area into core and penumbra.• The data were collected from mice: (i) of different ages, (ii) of two different strains, (iii) at different time points after the ischemic infarct induction, (iv) from two laboratories, (v) using two different MRI systems, and (vi) using three different sets of acquisition parameters.• Segmentations of the ischemic lesions are provided as well. These were obtained by: (i) two observers using a semi-automated method and (ii) using the novel automated segmentation approach described by Mulder et al. (2017).• Type/format of data: raw files, MetaImage files, text/Excel files, analyzed data.• The following set of images associated with each of the 121 scans is included: raw Bruker MRI data (reference scan, T2 scan with all echoes, calculated T2-weighted map), automated segmentations of the ischemic lesions and semi-automated segmentations by two observers.• For 99 of these scans, an accompanying set of Bruker MR diffusion maps, containing the Diffusion-Weighted Image (DWI) and calculated Apparent Diffusion Coefficient (ADC) maps, is included.• Acquisition hardware: small-animal Bruker MRI systems (7 T and 11.7 T).• Experimental set-up: infarct was induced in male mice of different age and background, using the tMCAo model. After that, MRI scans at different time points after infarct induction were acquired.• Data sources: Leiden, Netherlands; Cologne, Germany.• Data accessibility: all related data sets (121 T2 scans + template + 99 diffusion scans) were deposited in the public Dryad Digital Repository (https://doi.org/10.5061/dryad.1m528).Pattern Recognition and Bioinformatic

    Automated Ischemic Lesion Segmentation in MRI Mouse Brain Data after Transient Middle Cerebral Artery Occlusion

    Get PDF
    Magnetic resonance imaging (MRI) has become increasingly important in ischemic stroke experiments in mice, especially because it enables longitudinal studies. Still, quantitative analysis of MRI data remains challenging mainly because segmentation of mouse brain lesions in MRI data heavily relies on time-consuming manual tracing and thresholding techniques. Therefore, in the present study, a fully automated approach was developed to analyze longitudinal MRI data for quantification of ischemic lesion volume progression in the mouse brain. We present a level-set-based lesion segmentation algorithm that is built using a minimal set of assumptions and requires only one MRI sequence (T2) as input. To validate our algorithm we used a heterogeneous data set consisting of 121 mouse brain scans of various age groups and time points after infarct induction and obtained using different MRI hardware and acquisition parameters. We evaluated the volumetric accuracy and regional overlap of ischemic lesions segmented by our automated method against the ground truth obtained in a semi-automated fashion that includes a highly time-consuming manual correction step. Our method shows good agreement with human observations and is accurate on heterogeneous data, whilst requiring much shorter average execution time. The algorithm developed here was compiled into a toolbox and made publically available, as well as all the data sets.Pattern Recognition and Bioinformatic

    Iron loading is a prominent feature of activated microglia in Alzheimer’s disease patients

    Get PDF
    Brain iron accumulation has been found to accelerate disease progression in amyloid-β(Aβ) positive Alzheimer patients, though the mechanism is still unknown. Microglia have been identified as key players in the disease pathogenesis, and are highly reactive cells responding to aberrations such as increased iron levels. Therefore, using histological methods, multispectral immunofluorescence and an automated in-house developed microglia segmentation and analysis pipeline, we studied the occurrence of iron-accumulating microglia and the effect on its activation state in human Alzheimer brains. We identified a subset of microglia with increased expression of the iron storage protein ferritin light chain (FTL), together with increased Iba1 expression, decreased TMEM119 and P2RY12 expression. This activated microglia subset represented iron-accumulating microglia and appeared morphologically dystrophic. Multispectral immunofluorescence allowed for spatial analysis of FTL+Iba1+-microglia, which were found to be the predominant Aβ-plaque infiltrating microglia. Finally, an increase of FTL+Iba1+-microglia was seen in patients with high Aβ load and Tau load. These findings suggest iron to be taken up by microglia and to influence the functional phenotype of these cells, especially in conjunction with Aβ.Pattern Recognition and BioinformaticsComp Graphics & Visualisatio
    corecore