59 research outputs found

    Improving activation cross section data with TALYS

    No full text
    Needs for accurate (n,x) activation cross sections for fusion technology have been considered with reference to the current status of the TENDL library. The current work is focused on improving activation cross section data for nuclear reactions relevant mainly for fusion and astrophysical needs. The fits have been performed with the TALYS-1.8 code by means of nuclear model parameter variation, mostly for the optical model and level densities, followed by comparison to recent experimental data taken from EXFOR and other evaluated nuclear databases. The updated cross section data are going to be adopted into the new version of TENDL. The improvements have been performed both for differential as well as integral data sets

    Improving activation cross section data with TALYS

    No full text
    Needs for accurate (n,x) activation cross sections for fusion technology have been considered with reference to the current status of the TENDL library. The current work is focused on improving activation cross section data for nuclear reactions relevant mainly for fusion and astrophysical needs. The fits have been performed with the TALYS-1.8 code by means of nuclear model parameter variation, mostly for the optical model and level densities, followed by comparison to recent experimental data taken from EXFOR and other evaluated nuclear databases. The updated cross section data are going to be adopted into the new version of TENDL. The improvements have been performed both for differential as well as integral data sets

    Improving activation cross section data with TALYS

    No full text
    Needs for accurate (n,x) activation cross sections for fusion technology have been considered with reference to the current status of the TENDL library. The current work is focused on improving activation cross section data for nuclear reactions relevant mainly for fusion and astrophysical needs. The fits have been performed with the TALYS-1.8 code by means of nuclear model parameter variation, mostly for the optical model and level densities, followed by comparison to recent experimental data taken from EXFOR and other evaluated nuclear databases. The updated cross section data are going to be adopted into the new version of TENDL. The improvements have been performed both for differential as well as integral data sets

    First mirror test in JET for ITER : Complete overview after three ILW campaigns

    No full text
    The First Mirror Test for ITER has been carried out in JET with mirrors exposed during: (i) the third ILW campaign (ILW-3, 2015-2016, 23.33 h plasma) and (ii) all three campaigns, i.e. ILW-1 to ILW-3: 2011-2016, 63,52 h in total. All mirrors from main chamber wall show no significant changes of the total reflectivity from the initial value and the diffuse reflectivity does not exceed 3% in the spectral range above 500 nm. The modified layer on surface has very small amount of impurities such as D, Be, C, N, O and Ni. All mirrors from the divertor (inner, outer, base under the bulk W tile) lost reflectivity by 20-80% due to the beryllium-rich deposition also containing D, C, N, O, Ni and W. In the inner divertor N reaches 5 x 10(17) cm(-2), W is up to 4.3 x 10(17) cm(-2), while the content of Ni is the greatest in the outer divertor: 3.8 x 10(17) cm(-2). Oxygen-18 used as the tracer in experiments at the end of ILW-3 has been detected at the level of 1.1 x 10(16) cm(-2). The thickness of deposited layer is in the range of 90 nm to 900 nm. The layer growth rate in the base (2.7 pm s(-1)) and inner divertor is proportional to the exposure time when a single campaign and all three are compared. In a few cases, on mirrors located at the cassette mouth, flaking of deposits and erosion occurred.For complete list of authors see http://dx.doi.org/10.1016/j.nme.2019.02.009</p

    Identification of BeO and BeOxDy in melted zones of the JET Be limiter tiles : Raman study using comparison with laboratory samples

    No full text
    Beryllium oxide (BeO) and deuteroxide (BeOxDy) have been found on the melted zone of a beryllium tile extracted from the upper dump plate of JET-ILW (2011-2012 campaign). Results have been obtained using Raman microscopy, which is sensitive to both the chemical bond and crystal structure, with a micrometric lateral resolution. BeO is found with a wurtzite crystal structure. BeOxDy is found as three different types which are not the beta-phase but behaves as molecular species like Be(OD)(2), O(Be-D)(2) and DBeOD. The presence of a small amount of trapped D2O is also suspected. Our results therefore strongly suggest that D trapping occurs after melting through the formation of deuteroxides. The temperature increase favors the formation of crystal BeO which favors deuterium trapping through OD bonding.For complete list of authors see http://dx.doi.org/10.1016/j.nme.2018.11.008</p

    Detection of Causal Relations in Time Series Affected by Noise in Tokamaks Using Geodesic Distance on Gaussian Manifolds

    No full text
    Modern experiments in Magnetic Confinement Nuclear Fusion can produce Gigabytes of data, mainly in form of time series. The acquired signals, composing massive databases, are typically affected by significant levels of noise. The interpretation of the time series can therefore become quite involved, particularly when tenuous causal relations have to be investigated. In the last years, synchronization experiments, to control potentially dangerous instabilities, have become a subject of intensive research. Their interpretation requires quite delicate causality analysis. In this paper, the approach of Information Geometry is applied to the problem of assessing the effectiveness of synchronization experiments on JET (Joint European Torus). In particular, the use of the Geodesic Distance on Gaussian Manifolds is shown to improve the results of advanced techniques such as Recurrent Plots and Complex Networks, when the noise level is not negligible. In cases affected by particularly high levels of noise, compromising the traditional treatments, the use of the Geodesic Distance on Gaussian Manifolds allows deriving quite encouraging results. In addition to consolidating conclusions previously quite uncertain, it has been demonstrated that the proposed approach permit to successfully analyze signals of discharges which were otherwise unusable, therefore salvaging the interpretation of those experiments.For complete list of authors see http://dx.doi.org/10.3390/e19100569</p

    Impact of ICRF on the scrape-off layer and on plasma wall interactions : From present experiments to fusion reactor

    No full text
    Recent achievements in studies of the effects of ICRF (Ion Cyclotron Range of Frequencies) power on the SOL (Scrape-Off Layer) and PWI (Plasma Wall Interactions) in ASDEX Upgrade (AUG), Alcator C-Mod, and JET-ILW are reviewed. Capabilities to diagnose and model the effect of DC biasing and associated impurity production at active antennas and on magnetic field connections to antennas are described. The experiments show that ICRF near-fields can lead not only to E x B convection, but also to modifications of the SOL density, which for Alcator C-Mod are limited to a narrow region near antenna. On the other hand, the SOL density distribution along with impurity sources can be tailored using local gas injection in AUG and JET-ILW with a positive effect on reduction of impurity sources. The technique of RF image current cancellation at antenna limiters was successfully applied in AUG using the 3-strap AUG antenna and extended to the 4-strap Alcator C-Mod field-aligned antenna. Multiple observations confirmed the reduction of the impact of ICRF on the SOL and on total impurity production when the ratio of the power of the central straps to the total antenna power is in the range 0.6 &lt; P-cen / P-total &lt; 0.8. Near-field calculations indicate that this fairly robust technique can be applied to the ITER ICRF antenna, enabling the mode of operation with reduced PWI. On the contrary, for the A2 antenna in JET-ILW the technique is hindered by RF sheaths excited at the antenna septum. Thus, in order to reduce the effect of ICRF power on PWI in a future fusion reactor, the antenna design has to be optimized along with design of plasmafacing components.For complete list of authors see http://dx.doi.org/10.1016/j.nme.2018.11.017</p
    corecore